Подключение неоновой лампы 220 вольт. Подключение выключателя света с подсветкой. Схема включения светодиода в выключатель в квартире

Хотя, неоновые лампы и относятся к газоразрядным источникам освещения, их световое излучение вовсе не является результатом дугового разряда, в отличии других видов газоразрядных ламп.

Световое излучение такими лампами осуществляется ионизированными газами. Ионизация инертных газов (обычно, это смесь аргон + неон) является результатом взаимодействия нейтральных атомов данной инертной смеси лампы со свободными движущимися электронами.

Действительно, сегодня неоновая вывеска - довольно востребованный атрибут любой наружной рекламы. Их применение в этой сфере обусловлено, прежде всего, особенностями этих ламп:

Насыщенность, мягкость, яркость и приятность восприятия их изучаемого света;

Широкий диапазон цветовой температуры света. Изменение оттенка излучаемого света реализуется использованием цветного стекла или изменением состава газовой смеси в колбе (трубке). Так, трубки, наполненные неоном, излучают красный цвет, аргоном - голубой;

Срок службы - в некоторых случаях он достигает 15-ти лет (!), во многом, конечно, зависит от частоты включений-отключений при эксплуатации;

Наконец, в буквально смысле «гибкость» ламп - возможность придания неоновым трубкам, практически, любой формы - от нужной буквы любого размера до слова, целиком.

Установка и подключение неоновых трубок

Выбор устройства для преобразования напряжения. Для электропитания неоновых трубок используется высокое напряжение, поэтому, для преобразования (повышения) сетевого напряжения применяются повышающие электромагнитные, либо электронные (конвертеры) трансформаторы.

При выборе выходного напряжения трансформатора следует учитывать длину, диаметр трубки и состав газовой смеси. В таблице ниже приводятся значения вторичного напряжения трансформатора, исходя их длины трубки, в которой рабочей смесью является неон:

Для трубок, содержащих стандартную газовую смесь К-4 (75% неона + 25% аргона) вторичное напряжение трансформатора можно вычислить по следующей таблице:

При выборе электронных преобразователей следует иметь ввиду, что, несмотря на их б́ольшую компактность и меньший вес в сравнении с электромагнитными трансформаторами устанавливать их лучше в помещении.

Это связано с ограничениями в эксплуатации при отрицательных температурах. Для гарантированной качественной работы преобразователя напряжения, установленного на улице правильней будет использовать электромагнитный повышающий трансформатор напряжения.

Выбор провода. Высокое напряжение питания неоновых трубок требует использования специальных высоковольтных проводов, отличающихся от "обычных" толщиной и составом изоляции.

На фото показан высоковольтный провод марки ПМВК (провод высоковольтный монтажный теплостойкий), имеющий, довольно толстую силиконовую изоляцию с многопроволочной медной луженой жилой (сечение 0,5-1,5 мм2).

Монтаж. Существуют основные правила монтажа неоновой рекламы, требующие обязательного соблюдения:

Необходимо избегать прямых касаний неоновых трубок и высоковольтных проводов к металлическим поверхностям, поэтому, следует использовать специальные стандартные держатели из поликарбоната для трубок и проводов;

Касания высоковольтных проводов к металлическим конструкциям могут привести к утечке тока, что может вызвать выход трансформатора из строя. Свечение трубок при этом может быть неровным (мерцание);

При использовании нескольких трансформаторов, высоковольтные отходящие провода от них следует распологать на расстояние не менее 0,15-0,2 м от соседних;

Длину высоковольтной части установки (высоковольтных проводов) следует делать по возможности короче. Это сократит риск возникновения тока утечки, упомянутого выше;

Не окажется лишним поместить высоковольтные провода в ПВХ-трубу, особенно, в месте их прохождения через металлические перегородки;

Схемы подключения неоновых трубок через повышающие трансформаторы напряжения:

Подключение трансформаторов может быть быть выполнено двумя способами: с использованием стандартной — "классической" схемы (1) и подключением через нулевую точку (2):

Подключая трансформатор по схеме 2 можно добиться существенной экономии высоковольтного кабеля. В случае неисправности какой-либо трубки перестанет работать только одна секция — та, в которой расположена эта неисправная трубка.

Однако, следует учесть, что такое подключение предусматривает одинаковую длину неоновых трубок в совокупности левой и правой секций рекламной вывески. Кроме того, диаметр трубок и состав их рабочей смеси должен быть, также, одинаков.

Неон. Мысли о неоне.


Проверка высоковольтного трансформатора для неона

Во многих выключателях встроена очень полезная функция – подсветка. С этой функцией исключены поиски выключателя в темной комнате. Как же она работает? Подсветка устроена довольно просто: под клавишей выключателя помещается миниатюрный световой индикатор, а в клавише сделано небольшое окно, через которое можно видеть состояние выключателя.

Выключатель с подсветкой в интерьере комнаты

В качестве индикатора используют неоновую лампочку или светодиод, в работе каждого из них есть свои особенности. Во многих источниках сообщается, что такие выключатели можно использовать только с галогенными и лампами накаливания, так как энергосберегающие – с такими выключателями вспыхивают, а светодиодные – немного светятся в темноте.

Для того чтобы разобраться с этими явлениями надо понимать механизм работы каждого индикатора.

Неоновый индикатор

Во многих выключателях используют неоновую лампочку в качестве индикатора, она представляет собой чаще всего стеклянный баллон, заполненный неоном, в котором размещены на некотором расстоянии друг от друга два электрода.

Давление газа очень небольшое – несколько десятых долей мм ртутного столба. В такой среде между электродами при подаче на них напряжения возникает так называемый тлеющий разряд – это светятся ионизированные молекулы газа. В зависимости от рода газа цвет свечения может быть самым разным: от красного у неона, до сине-зеленого у аргона.

На рисунке изображена миниатюрная неоновая лампочка, в электротехнике их чаще всего используют в качестве индикаторов наличия тока.

Подсветка на неоновой лампочке

Выключатель с подсветкой на неоновой лампочке очень надежен, срок службы лампочки более 5 тыс. часов, индикатор хорошо виден в темноте. Схема подключения проста.

Схема подключения подсветки на неоновой лампочке

На схеме изображено подключение подсветки из неонки к выключателю. L1 – это неоновая лампочка из типа МН-6, ток 0,8 мА, напряжение зажигания 90 В, это данные из справочника. R1 – гасящий резистор, S1 – выключатель освещения.

Расчет гасящего резистора

Сопротивление резистора рассчитывается по формуле:

где R – сопротивление резистора (Ом);
∆U – разность (Uс – Uз) между напряжением сети и зажиганием лампы в вольтах;
I – сила тока лампы (А).

R=(220-90)/0,0008=162500 ОМ.

Ближайший номинал резистора 150 кОм. Вообще номинал резистора можно выбирать в пределах от 150 до 510 кОм, при этом лампочка нормально работает, при большем номинале увеличивается долговечность, и уменьшается рассеиваемая мощность.

Мощность резистора вычисляется по следующей формуле:

где P – мощность (Вт), рассеиваемая на резисторе;

P=220-90 × 0,0008 = 0,104 Вт.

Ближайший больший номинал мощности резистора – 0,125 Вт. Этой мощности вполне хватает, резистор едва заметно нагревается, не более чем до 40-50 градусов, что вполне допустимо. Если есть возможность, желательно поставить резистор мощностью 0,25 Вт.

Конструкция

Если припаять вывод резистора к любому выводу лампы, можно собрать схему.

Собранная подсветка своими руками

Остается собранную схему подключить. Для этого при снятом корпусе выключателя вывод резистора подключается к одной клемме, а лампочки – к другой.

Схема работы неоновой подсветки

Теперь при выключенном положении клавиши, ток будет идти через схему (нижний рисунок), а так как ток ограничен сопротивлением, то силы его хватит, чтобы зажечь подсветку, но совершенно недостаточно для работы лампы освещения. При включении выводы схемы подсветки закорачиваются, и ток течет через выключатель, минуя подсветку, к лампе освещения (верхний рисунок).

Такую подсветку можно поставить в выключатель, в котором она не была предусмотрена изготовителем, при этом в клавише включения не обязательно сверлить отверстие. Материал, из которого делают клавиши, легко просвечивается, и в темноте выключатель довольно хорошо виден, поэтому сверлить отверстие для лампочки не обязательно.

Светодиодная подсветка

Часто встречается подсветка из светодиода, который представляет собой полупроводниковый прибор излучающий свет при протекании через него электрического тока.

Цвет светоизлучающего диода зависит от материала, из которого он изготовлен и в некоторой степени от приложенного напряжения. Светодиоды представляют собой соединение двух полупроводников различных типов проводимости p и n . Называют это соединение – электронно-дырочный переход, именно на нем возникает излучение света при прохождении через него прямого тока.

Возникновение светового излучения объясняется рекомбинацией носителей зарядов в полупроводниках, на приведенном ниже рисунке изображена примерная картина происходящего в светодиоде.

Рекомбинация носителей зарядов и возникновение светового излучения

На рисунке кружком со знаком «–» обозначены отрицательные заряды, они находятся в зеленой области, так условно обозначена область n. Кружок со знаком «+» символизирует положительные носители тока, находятся они в коричневой зоне p, граница между этими областями и есть p-n переход.

Когда под действием электрического поля положительный заряд преодолевает p-n переход, то прямо на границе он соединяется с отрицательным. А так как при соединении происходит и возрастание энергии от столкновения этих зарядов, то часть энергии идет на нагревание материала, а часть излучается в виде светового кванта.

Конструктивно светодиод представляет собой металлическое, чаще всего медное основание, на котором закреплены два кристалла полупроводников разной проводимости, один из них является анодом, другой – катодом. К основанию приклеен алюминиевый рефлектор с закрепленной на нем линзой.

Как можно понять из рисунка ниже, немало в конструкции уделено внимания отводу тепла, это неслучайно, так как полупроводники хорошо работают в узком тепловом коридоре, выход за его границы нарушает работу прибора вплоть до выхода из строя.

Схема устройства светодиода

У полупроводников с ростом температуры, в отличие от металлов, сопротивление не увеличивается, а напротив, уменьшается. Это может вызвать неконтролируемое увеличение силы тока и соответственно нагрева, при достижении определенного порога происходит пробой.

Светодиоды очень чувствительны к превышению порогового напряжения, даже кратковременный импульс выводит его из строя. Поэтому токоограничивающие резисторы должны быть подобраны очень точно. Кроме того, светодиод рассчитан на прохождение тока только в прямом направлении, т.е. от анода к катоду, если прикладывается напряжение обратной полярности, то это также может вывести его из строя.

И все же, несмотря на эти ограничения, светодиоды широко применяются для подсветки в выключателях. Рассмотрим схемы включения и защиты светодиодов в выключателях.

На рисунке ниже приведена схема подсветки. Она содержит: гасящий резистор R1, светодиод VD2 и защитный диод VD1. Буква а – анод светодиода, k – катод.

Схема подсветки на светодиоде

Так как рабочее напряжение светодиода гораздо ниже сетевого, то для его снижения используют гасящие резисторы, в зависимости от потребляемого тока его сопротивление будет разным.

Расчет сопротивления резистора

Сопротивление резистора R рассчитывается по формуле:

где R – сопротивление гасящего резистора (Ом);

Сделаем расчет гасящего резистора для светодиода АЛ307А. Исходные данные: рабочее напряжение 2 В, сила тока от 10 до 20 мА.

Используя вышеприведенную формулу, R макс =(220 – 2)/0,01=218 00 ОМ, R мин = (220 – 2)/0,02=10900 ОМ. Получаем, что сопротивление резистора должно лежать в пределах от 11 до 22 кОм.

Расчет мощности

где Р – мощность, рассеиваемая на резисторе (Вт);

U c – напряжение сети (здесь 220 В);

U сд – рабочее напряжение светодиода (В);

I сд – рабочий ток светодиода (А);

Подсчитываем мощность: Р мин =(220-2)*0,01 = 2,18 Вт, Р макс =(220-2)*0,02=4,36 Вт. Как следует из расчета, мощность, рассеиваемая резистором, довольно значительная.

Из номиналов мощностей резисторов самый ближайший больший – это 5 Вт, но такой резистор довольно больших габаритов, и спрятать его в корпус выключателя не удастся, да и впустую тратить электроэнергию нерационально.

Так как расчет проводился на максимально допустимый ток светодиода, а в таком режиме у него многократно снижается долговечность, снизив ток в два раза, можно убить двух зайцев: уменьшить рассеиваемую мощность и увеличить срок службы светодиода. Для этого надо просто увеличить сопротивление резистора вдвое до 22-39 кОм.

Подключение подсветки к клеммам выключателя

На рисунке выше приведена схема подключения подсветки к клеммам выключателя. К одной клемме подходит фазный провод сети, ко второй –провод от лампочки освещения, подсветка подключается к двум этим клеммам. Когда выключатель разомкнут, то через схему подсветки течет ток, и она горит, но лампа освещения не светится. Если выключатель замкнуть, то напряжение потечет по цепи, минуя подсветку, освещение включится.

В заводских выключателях с подсветкой чаще всего используется схема, изображенная на рисунке выше. Номинал резистора – от 100 до 200 кОм, производители идут на сознательное уменьшение тока через светодиод до 1-2 мА, а значит, и яркости свечения, потому что в ночное время этого вполне достаточно. В то же время снижается рассеиваемая мощность, можно не устанавливать и защитный диод, потому что обратное напряжение не превышает допустимое.

Применение конденсатора

В качестве гасящего элемента можно применить конденсатор, он в отличие от резистора имеет не активное, а реактивное сопротивление, поэтому при прохождении через него тока на нем не выделяется тепло.

Все дело в том, что при движении электронов по проводящему слою резистора, они сталкиваются узлами кристаллической решетки материала и передают им часть своей кинетической энергии. Поэтому материал нагревается, а электрический ток испытывает сопротивление продвижению.

Совершенно другие процессы возникают при движении тока через конденсатор. Конденсатор в простейшем случае представляет собой две металлических пластины, разделенные диэлектриком, так что постоянный электрический ток через него течь не может. Но зато на этих пластинах может сохраняться заряд, и если его периодически заряжать и разряжать, то в цепи начинает течь переменный ток.

Расчет гасящего конденсатора

Если конденсатор включить в цепь переменного тока, то он через него будет протекать, но в зависимости от емкости и частоты тока его напряжение снизится на какую-то величину. Для вычисления используют следующую формулу:

где X c – емкостное сопротивление конденсатора (ОМ);

f – частота тока в сети (в нашем случае 50 ГЦ);

С – емкость конденсатора в (мкФ);

Для расчетов эта формула не совсем удобна, поэтому на практике чаще всего прибегают к следующей – эмпирической, которая позволяет с достаточной точностью проводить подбор конденсатора.

C=(4,45*I)/(U-U д)

Исходные данные: U c –220 В; U сд –2 В; I сд –20 мА;

Находим емкость конденсатора С =(4,45*20)/(220-2)=0,408 мкФ, из ряда номинальных емкостей Е24 выбираем ближайший меньший 0,39 мкФ. Но при выборе конденсатора необходимо еще учитывать его рабочее напряжение, оно должно быть не меньше, чем U c *1,41.

Дело в том, что в цепи переменного тока принято различать действующее и эффективное напряжение. Если форма тока синусоидальная, то действующее напряжение в 1,41 больше эффективного. Значит, конденсатор должен иметь минимальное рабочее напряжение 220*1,41=310 В. А так как такого номинала нет, то ближайший больший будет 400 В.

Для этих целей можно использовать пленочный конденсатор типа К73-17, его габариты и масса вполне позволяют разместить в корпусе выключателя.

Выключатель в работе. Видео

О совместной работе светодиодной лампы и выключателя с подсветкой можно узнать из этого видео.

Все расчеты, сделанные в статье, действительны для режима нормального свечения, при использовании их для выключателей номиналы резисторов можно скорректировать в сторону увеличения в 2-3 раза. Это уменьшит яркость свечения светодиода, неонки и мощность рассеивания резисторов, а значит, и их габариты.

Если в качестве гасящего сопротивления используется конденсатор, то его номинал нужно корректировать в сторону уменьшения для снижения яркости, а также габаритов, но рабочее напряжение конденсатора снижать нельзя.

Снижение силы тока через подсветку уменьшает вероятность мигания энергосберегающих ламп в темноте, так как уровень зарядки входного конденсатора в импульсном преобразователе этих ламп не достигает порога запуска.

Принципиальные схемы простых индикаторов наличия сети 220В на светодиодах, меняем старые неоновые индикаторные лампы на светодиоды. В электрооборудовании повсеместно применяются индикаторные неоновые лампы для индикации включения аппаратуры.

В большинстве случаев схема как на рисунке 1. То есть, неоновая лампа через резистор сопротивлением 150-200 киолом подключается к сети переменного тока. Порог пробоя неоновой лампы ниже 220V, потому она легко пробивается и светится. А резистор ограничивает ток через неё, чтобы она не взорвалась от превышения тока.

Бывают и неоновые лампы со встроенными токоограничительными резисторами, в таких схемах кажется как будто неоновая лампа включена в сеть без резистора. На самом деле резистор спрятан в её цоколе или в её проволочном выводе.

Недостаток неоновых индикаторных ламп в слабом свечении и только розовом цвете свечения, ну и еще в том что это стекло. Плюс, неоновые лампы сейчас в продаже встречаются реже светодиодов. Понятно, что есть соблазн сделать аналогичный индикатор включения, но на светодиоде, тем более светодиоды бывают разных цветов и значительно более яркие чем «неонки», ну и нет стекла.

Но, светодиод низковольтный прибор. Прямое напряжение обычно не более ЗV, да и обратное тоже весьма низкое. Даже если светодиодом заменить неоновую лампу, он выйдет из строя за счет превышения обратного напряжения при отрицательной полуволне сетевого напряжения.

Рис. 1. Типовая схема подключения неоновой лампы к сети 220В.

Впрочем, есть двухцветные двухвыводные светодиоды. В корпусе такого светодиода есть два разноцветных светодиода, включенных встречно-параллельно. Такой светодиод можно подключить практически так же, как неоновую лампу (рис.2), только резистор взять сопротивлением поменьше, потому что для хорошей яркости через светодиод должен протекать ток больше чем через неоновую лампу.

Рис. 2. Схема индикатора сети 220В на двухцветном светодиоде.

В этой схеме одна половина двухцветного светодиода HL1 работает на одной полуволне, а вторая - на другой полуволне сетевого напряжения. В результате обратное напряжение на светодиоде не превышает прямого. Единственный недостаток - цвет. Он желтый. Потому что обычно два цвета - красный и зеленый, но горят они почти одновременно, потому зрительно выглядит как желтый цвет.

Рис. 3. Схема индикатора сети 220В на двухцветном светодиоде и конденсаторе.

На рисунках 4 и 5 показана схема индикатора включения на двух светодиодах, включенных встречно-параллельно. Это почти то же, что на рис. 3 и 4, но светодиоды отдельные для каждого полупериода сетевого напряжения. Светодиоды могут быть как одного цвета, так и разного.

Рис. 4. Схема индикатора сети 220В с двумя светодиодами.

Рис. 5. Схема индикатора сети 220В с двумя светодиодами и конденсатором.

Но, если нужен только один светодиод, -второй можно заменить обычным диодом, например, 1N4148 (рис.6 и 7). И нет ничего страшного в том, что этот светодиод не рассчитан на напряжение электросети. Потому что обратное напряжение на нем не превысит прямого напряжения светодиода.

Рис. 6. Схема индикатора сети 220В со светодиодом и диодом.

Рис. 2. Схема индикатора сети 220В с одним светодиодом и конденсатором.

В схемах испытывались светодиоды, двухцветные типа L-53SRGW и одно-цветные типа АЛ307. Конечно же можно применить и любые другие аналогичные индикаторные светодиоды. Резисторы и конденсаторы так же могут быть других величин, - все зависит от того, какую силу тока нужно пустить через светодиод.

Андронов В. РК-2017-02.

Радио 1967, 4

Неоновая лампа относится к классу приборов тлеющего разряда. Она представляет собой стеклянный баллон (рис. 1), внутри которого помещены два металлических электрода. Электроды могут быть плоские, цилиндрической формы и в виде прямых или изогнутых стержней. Баллон заполнен инертным газом (неон, аргон или смесь их с гелием), находящимся под низким давлением (несколько мм ртутного столба).

Одни из электродов лампы является катодом, другой - анодом. У ламп, предназначенных для работы на переменном токе, каждый электрод является поочередно анодом и катодом.

Соберём простую установку в соответствии со схемой, показанной на рис. 2, из источника питания, потенциометра R1 и вольтметра с пределом измерения 150 В, включённого параллельно неоновой лампе Л1.

В качестве источника питания можно использовать батарею или маломощный выпрямитель, дающий постоянное напряжение не ниже 80 в.

Пока напряжение на электродах лампы мало, газовый промежуток между электродами является изолятором. По мере перемещения движка потенциометра влево (по схеме) напряжение на электродах лампы постепенно увеличивается. При определённом для данной лампы напряжении в ней возникает тлеющий разряд, при этом внутреннее сопротивление лампы резко уменьшается, а ток через неё возрастает. Напряжение, при котором в лампе возникает тлеющий разряд, называется напряжением зажигания. Величина его зависит от состава и давления газа в лампе, материала и формы электродов, и расстояния между электродами.

Возникновение тлеющего разряда можно объяснить следующим образом. В газе даже при обычной температуре часть молекул будет ионизирована, то есть в газе среди нейтральных молекул будут существовать электроны и положительные ионы - молекулы газа, потерявшие часть электронов.

При подаче на электроды лампы постоянного напряжения между ними создаётся электрическое поле. Электроны движутся в этом поле к положительному электроду - аноду, а положительные ионы к отрицательному электроду - катоду. Если напряжённость электрического поля между электродами лампы достаточно велика, электроны приобретают такую скорость, что при столкновении с молекулой газа ионизируют её; в свою очередь ноны, бомбардируя катод, выбивают из него новые электроны. В результате ионизации газ становится электропроводным, но в отличие от металлов, где ток создастся электронами, здесь в создании тока участвуют как электроны, так и ионы.

Ввиду того, что молекулы газа как при ионизации, так и при рекомбинации (восстановлении иона в нейтральную молекулу в результате захвата электрона) могут испускать свет, газ вблизи катода начинает светиться. Цвет свечения может быть красным или красно-оранжевым в зависимости от состава газа.

При прохождении через неоновую лампу переменного тока свечение наблюдается у обоих электродов.

Площадь свечения зависит от силы тока через лампу. С увеличением тока в работу включаются всё новые участки катода и площадь свечения расширяется. Напряжение на электродах лампы при этом сохраняется почти постоянным до тех пор, пока свечением будет охвачен весь катод.

Неоновая лампа - индикатор наэлектризованности тела . Определить, заряжено ли тело, можно не только электрометром, но и неоновой лампой. При приближении вывода электрода неоновой лампы к наэлектризованному телу, например, к стеклянной или эбонитовой палочке, наэлектризованной трением, в лампе возникает тлеющий разряд. Держать лампу следует за вывод второго электрода.

При помощи неоновой лампы можно убедиться, что во время работы школьной электрофорной машины электризуются только секторы из порошка алюминия, нанесённые на диски,- для этого следует поднести лампу к сектору диска. Если лампу поднести к диску между секторами, лампа не зажжётся.

Неоновая лампа - указатель полярности . Пользуясь тем, что свечение возникает у катода, то есть электрода, находящегося под отрицательным потенциалом, можно при помощи неоновой лампы определить полярность источника постоянного тока. Для этого лампу подключают к выводам источника тока и определяют, какой электрод лампы при этом светятся.

Предварительно, подключая неоновую лампу к источнику постоянного тока, полярность которого известна, нужно точно установить, как электроды лампы присоединены к цоколю.

В квартиру введены два провода электросети. Один из них соединён с землёй, его называют нулевым проводом. Прикосновение к нему безопасно. Другой провод, называемый фазовым, находится под полным напряжением относительно земли и прикосновение к нему может оказаться опасным для жизни. Отличить эти провода один от другого можно при помощи пробника с неоновой лампой (рис. 3).

Пробник можно вмонтировать в изготовленную из прозрачной пластмассы рукоятку отвёртки, при этом один электрод лампы через резистор R1 соединяют с лезвием отвёртки, другой электрод подключают к металлическому кольцу, одетому на рукоятку отвёртки.

Прикосновение лезвием отвёртки к нулевому проводу не вызывает зажигания лампы, в случае прикосновения к фазовому проводу лампа зажжётся. Отвёртку следует держать так, чтобы был обеспечен контакт между рукой и металлическим кольцом.

При перегорании плавкого предохранителя - «пробки» приходится поочерёдно вывёртывать из гнёзд все предохранители в поисках перегоревшего. Если же параллельно каждому предохранителю включить неоновую лампу и резистор R1 (рис. 4), то при перегорании предохранителя напряжение сети через включённые электроприборы и резистор R1 окажется приложенным к неоновой лампе, вызывая её зажигание.

В течение суток напряжение электрической сети обычно изменяется в некоторых пределах. Вечером, когда общее число электроприборов, включённых в сеть, увеличивается, напряжение несколько падает. Днём, когда нагрузка сети мала, напряжение становится нормальным или несколько выше нормы.

Для некоторых приборов, например, телевизора или радиоприёмника, изменение напряжения сети не должно превышать определённых значений во избежание выхода их из строя. Контролировать напряжение сети можно с помощью вольтметра, но лучше это делать при помощи индикатора напряжения, выполненного на неоновых лампах.

Схема индикатора показана на рис. 5. В сеть переменного тока с напряжением 220 в включены два делителя напряжения из резисторов R1, R2 и R3, R4. Неоновые лампы Л1 и Л2 типа МН-3 включены параллельно резисторам R1 и R3. Сопротивления резисторов R1 и R2 выбраны так, что падение напряжения на резисторе R1 оказывается достаточным для зажигания лампы Л1, когда напряжение сети равно минимально допустимому (200 в). Падение напряжения на резисторе R3 должно быть равно напряжению зажигания лампы Л2, когда напряжение сети увеличится до максимально допустимого (230 В).

Следовательно, если напряжение сети находится в допустимых пределах, горит одна лампа Л1. Если ни одна из ламп не горит, значит, напряжение сети недостаточно для нормальной работы телевизора, горение же обеих ламп свидетельствует о повышении напряжения выше установленных пределов, в обоих случаях телевизор необходимо отключить от сети.

Неоновая лампа относится к классу приборов тлеющего разряда. Она представляет собой стеклянный баллон (рис. 1), внутри которого помещены два металлических электрода. Электроды могут быть плоские, цилиндрической формы и в виде прямых или изогнутых стержней. Баллон заполнен инертным газом (неон, аргон или смесь их с гелием), находящимся под низким давлением (несколько мм ртутного столба).


Рис. 1

Одни из электродов лампы является катодом, другой - анодом. У ламп, предназначенных для работы на переменном токе, каждый электрод является поочередно анодом и катодом.

Соберем простую установку в соответствии со схемой, показанной на рис. 2, из источника питания, потенциометра R1 и вольтметра с пределом измерения 150 В, включенного параллельно неоновой лампе Л1.


Рис. 2

В качестве источника питания можно использовать батарею или маломощный выпрямитель, дающий постоянное напряжение не ниже 80 в.

Пока напряжение на электродах лампы мало, газовый промежуток между электродами является изолятором. По мере перемещения движка потенциометра влево (по схеме) напряжение на электродах лампы постепенно увеличивается. При определенном для данной лампы напряжении в ней возникает тлеющий разряд, при этом внутреннее сопротивление лампы резко уменьшается, а ток через нее возрастает. Напряжение, при котором в лампе возникает тлеющий разряд, называется напряжением зажигания. Величина его зависит от состава и давления газа в лампе, материала и формы электродов, и расстояния между электродами.

Возникновение тлеющего разряда можно объяснить следующим образом. В газе даже при обычной температуре часть молекул будет ионизирована, то есть в газе среди нейтральных молекул будут существовать электроны и положительные ионы - молекулы газа, потерявшие часть электронов.

При подаче на электроды лампы постоянного напряжения между ними создается электрическое поле. Электроны движутся в этом поле к положительному электроду - аноду, а положительные ионы к отрицательному электроду - катоду. Если напряженность электрического поля между электродами лампы достаточно велика, электроны приобретают такую скорость, что при столкновении с молекулой газа ионизируют ее; в свою очередь ноны, бомбардируя катод, выбивают из него новые электроны. В результате ионизации газ становится электропроводным, но в отличие от металлов, где ток создастся электронами, здесь в создании тока участвуют как электроны, так и ионы.

Ввиду того, что молекулы газа как при ионизации, так и при рекомбинации (восстановлении иона в нейтральную молекулу в результате захвата электрона) могут испускать свет, газ вблизи катода начинает светиться. Цвет свечения может быть красным или красно-оранжевым в зависимости от состава газа.

При прохождении через неоновую лампу переменного тока свечение наблюдается у обоих электродов.

Площадь свечения зависит от силы тока через лампу. С увеличением тока в работу включаются все новые участки катода и площадь свечения расширяется. Напряжение на электродах лампы при этом сохраняется почти постоянным до тех пор, пока свечением будет охвачен весь катод.

Неоновая лампа - индикатор наэлектризованности тела . Определить, заряжено ли тело, можно не только электрометром, но и неоновой лампой. При приближении вывода электрода неоновой лампы к наэлектризованному телу, например, к стеклянной или эбонитовой палочке, наэлектризованной трением, в лампе возникает тлеющий разряд. Держать лампу следует за вывод второго электрода.

При помощи неоновой лампы можно убедиться, что во время работы школьной электрофорной машины электризуются только секторы из порошка алюминия, нанесенные на диски,- для этого следует поднести лампу к сектору диска. Если лампу поднести к диску между секторами, лампа не зажжется.

Неоновая лампа - указатель полярности . Пользуясь тем, что свечение возникает у катода, то есть электрода, находящегося под отрицательным потенциалом, можно при помощи неоновой лампы определить полярность источника постоянного тока. Для этого лампу подключают к выводам источника тока и определяют, какой электрод лампы при этом светятся.

Предварительно, подключая неоновую лампу к источнику постоянного тока, полярность которого известна, нужно точно установить, как электроды лампы присоединены к цоколю.

Неоновая лампа - указатель фазового провода . В квартиру введены два провода электросети. Один из них соединен с землей, его называют нулевым проводом. Прикосновение к нему безопасно. Другой провод, называемый фазовым, находится под полным напряжением относительно земли и прикосновение к нему может оказаться опасным для жизни. Отличить эти провода один от другого можно при помощи пробника с неоновой лампой (рис. 3).


Рис. 3

Пробник можно вмонтировать в изготовленную из прозрачной пластмассы рукоятку отвертки, при этом один электрод лампы через резистор R1 соединяют с лезвием отвертки, другой электрод подключают к металлическому кольцу, одетому на рукоятку отвертки.

Прикосновение лезвием отвертки к нулевому проводу не вызывает зажигания лампы, в случае прикосновения к фазовому проводу лампа зажжется. Отвертку следует держать так, чтобы был обеспечен контакт между рукой и металлическим кольцом.

Неоновая лампа - сигнализатор о перегорании предохранителя . При перегорании плавкого предохранителя - "пробки" приходится поочередно вывертывать из гнезд все предохранители в поисках перегоревшего. Если же параллельно каждому предохранителю включить неоновую лампу и резистор R1 (рис. 4), то при перегорании предохранителя напряжение сети через включенные электроприборы и резистор R1 окажется приложенным к неоновой лампе, вызывая ее зажигание.


Рис. 4

Неоновая лампа - индикатор напряжения сети . В течение суток напряжение электрической сети обычно изменяется в некоторых пределах. Вечером, когда общее число электроприборов, включенных в сеть, увеличивается, напряжение несколько падает. Днем, когда нагрузка сети мала, напряжение становится нормальным или несколько выше нормы.

Для некоторых приборов, например, телевизора или радиоприемника, изменение напряжения сети не должно превышать определенных значений во избежание выхода их из строя. Контролировать напряжение сети можно с помощью вольтметра, но лучше это делать при помощи индикатора напряжения, выполненного на неоновых лампах.

Схема индикатора показана на рис. 5.


Рис. 5

В сеть переменного тока с напряжением 220 в включены два делителя напряжения из резисторов R1, R2 и R3, R4. Неоновые лампы Л1 и Л2 типа МН-3 включены параллельно резисторам R1 и R3. Сопротивления резисторов R1 и R2 выбраны так, что падение напряжения на резисторе R1 оказывается достаточным для зажигания лампы Л1, когда напряжение сети равно минимально допустимому (200 в). Падение напряжения на резисторе R3 должно быть равно напряжению зажигания лампы Л2, когда напряжение сети увеличится до максимально допустимого (230 В).

Следовательно, если напряжение сети находится в допустимых пределах, горит одна лампа Л1. Если ни одна из ламп не горит, значит, напряжение сети недостаточно для нормальной работы телевизора, горение же обеих ламп свидетельствует о повышении напряжения выше установленных пределов, в обоих случаях телевизор необходимо отключить от сети.

Читайте и пишите полезные