Модуль для заряда Li-ion аккумуляторов. Модуль для заряда Li-ion аккумуляторов Электрическая схема контроллера заряда аккумулятора p 4056

Литиевые аккумулятор (Li-Io, Li-Po) являются самыми популярными на данный момент перезаряжаемыми источниками электрической энергии. Литиевый аккумулятор имеет номинальное напряжение 3.7 Вольт, именно оно указывается на корпусе. Однако, заряженный на 100% аккумулятор имеет напряжение 4.2 В, а разряженный “в ноль” – 2.5 В, вообще нет смысла разряжать аккумулятор ниже 3 В, во-первых, он от этого портится, во-вторых, в промежутке от 3 до 2.5 В аккумулятор отдаёт всего пару процентов энергии. Таким образом, рабочий диапазон напряжений принимаем 3 – 4.2 Вольта. Мою подборку советов по эксплуатации и хранению литиевых аккумуляторов вы можете посмотреть вот в этом видео

Есть два варианта соединения аккумуляторов, последовательное и параллельное.

При последовательном соединении суммируется напряжение на всех аккумуляторах, при подключении нагрузки с каждого аккумулятора идет ток, равный общему току в цепи, в общем сопротивление нагрузки задает ток разряда. Это вы должны помнить со школы. Теперь самое интересное, емкость. Емкость сборки при таком соединении по хорошему равна емкости аккумулятора с самой маленькой емкостью. Представим, что все аккумуляторы заряжены на 100%. Смотрите, ток разряда у нас везде одинаковый, и первым разрядится аккумулятор с самой маленькой емкостью, это как минимум логично. И как только он разрядится, дальше нагружать данную сборку будет уже нельзя. Да, остальные аккумуляторы еще заряжены. Но если мы продолжим снимать ток, то наш слабый аккумулятор начнет переразряжаться, и выйдет из строя. То есть правильно считать, что емкость последовательно соединенной сборки равна емкости самого малоемкого, либо самого разряженного аккумулятора. Отсюда делаем вывод: собирать последовательную батарею нужно во первых из одинаковых по емкости аккумуляторов, и во вторых, перед сборкой они все должны быть заряжены одинаково, проще говоря на 100%. Существует такая штука, называется BMS (Battery Monitoring System), она может следить за каждым аккумулятором в батарее, и как только один из них разрядится, она отключает всю батарею от нагрузки, об этом речь пойдёт ниже. Теперь что касается зарядки такой батареи. Заряжать ее нужно напряжением, равным сумме максимальных напряжений на всех аккумуляторах. Для литиевых это 4.2 вольта. То есть батарею из трех заряжаем напряжением 12.6 в. Смотрите что происходит, если аккумуляторы не одинаковые. Быстрее всех зарядится аккумулятор с самой маленькой емкостью. Но остальные то еще не зарядились. И наш бедный аккумулятор будет жариться и перезаряжаться, пока не зарядятся остальные. Переразряда, я напомню, литий тоже очень сильно не любит и портится. Чтобы этого избежать, вспоминаем предыдущий вывод.

Перейдем к параллельному соединению. Емкость такой батареи равна сумме емкостей всех аккумуляторов в нее входящих. Разрядный ток для каждой ячейки равен общему току нагрузки, деленному на число ячеек. То есть чем больше акумов в такой сборке, тем больший ток она может отдать. А вот с напряжением происходит интересная вещь. Если мы собираем аккумуляторы, имеющие разное напряжение, то есть грубо говоря заряженные до разного процента, то после соединения они начнут обмениваться энергией до тех пор, пока напряжение на всех ячейках не станет одинаковым. Делаем вывод: перед сборкой акумы опять же должны быть заряжены одинаково, иначе при соединении пойдут большие токи, и разряженный акум будет испорчен, и скорее всего может даже загореться. В процессе разряда аккумуляторы тоже обмениваются энергией, то есть если одна из банок имеет меньшую емкость, остальные не дадут ей разрядиться быстрее их самих, то есть в параллельной сборке можно использовать аккумуляторы с разной емкостью. Единственное исключение – работа при больших токах. На разных аккумуляторах под нагрузкой по-разному просаживается напряжение, и между “сильным” и “слабым” акумом начнёт бежать ток, а этого нам совсем не нужно. И то же самое касается зарядки. Можно абсолютно спокойно заряжать разные по емкости аккумуляторы в параллели, то есть балансировка не нужна, сборка будет сама себя балансировать.

В обоих рассмотренных случаях нужно соблюдать ток зарядки и ток разрядки. Ток зарядки для Li-Io не должен превышать половины ёмкости аккумулятора в амперах (аккумулятор на 1000 mah – заряжаем 0.5 А, аккумулятор 2 Ah, заряжаем 1 А). Максимальный ток разрядки обычно указан в даташите (ТТХ) аккумулятора. Например: ноутбучные 18650 и аккумы от смартфонов нельзя грузить током, превышающим 2 ёмкости аккумулятора в Амперах (пример: акум на 2500 mah, значит максимум с него нужно брать 2.5*2 = 5 Ампер). Но существуют высокотоковые аккумуляторы, где ток разряда явно указан в характеристиках.

Особенности зарядки аккумуляторов китайскими модулями

Стандартный покупной зарядно-защитный модуль за 20 рублей для литиевого аккумулятора (ссылка на Aliexpress )
(позиционируется продавцом как модуль для одной банки 18650) может и будет заряжать любой литиевый аккумулятор вне зависимости от формы, размера и емкости до правильного напряжения 4,2 вольта (напряжение полностью заряженного аккумулятора, под завязку). Даже если это огромный литиевый пакет на 8000mah (разумеется речь идет про одну ячейку на 3,6-3,7v). Модуль дает зарядный ток 1 ампер , это значит что им можно без опаски заряжать любой аккумулятор емкостью от 2000mah и выше (2Ah, значит зарядный ток – половина емкости, 1А) и соответственно время зарядки в часах будет равно емкости аккумулятора в амперах (на самом деле чуть больше, полтора-два часа на каждые 1000mah). Кстати аккумулятор можно подключать к нагрузке уже во время заряда.

Важно! Если вы хотите заряжать аккумулятор меньшей емкости (например одну старую банку на 900mah или крошечный литиевый пакетик на 230mah), то зарядный ток 1А это много, его следует уменьшить. Это делается заменой резистора R3 на модуле согласно приложенной таблице. Резистор необязательно smd, подойдет самый обычный. Напоминаю, что зарядный ток должен составлять половину от емкости аккумулятора (или меньше, не страшно).

Но если продавец говорит, что этот модуль для одной банки 18650, можно ли им заряжать две банки? Или три? Что если нужно собрать емкий пауэрбанк из нескольких аккумуляторов?
МОЖНО! Все литиевые аккумуляторы можно подключать параллельно (все плюсы к плюсам, все минусы к минусам) ВНЕ ЗАВИСИМОСТИ ОТ ЕМКОСТИ. Спаянные параллельно аккумуляторы сохраняют рабочее напряжение 4,2v а их емкость складывается. Даже если вы берете одну банку на 3400mah а вторую на 900 – получится 4300. Аккумуляторы будут работать как одно целое и разряжаться будут пропорциональной своей емкости.
Напряжение в ПАРАЛЛЕЛЬНОЙ сборке ВСЕГДА ОДИНАКОВО НА ВСЕХ АККУМУЛЯТОРАХ! И ни один аккумулятор физически не может разрядиться в сборке раньше других, здесь работает принцип сообщающихся сосудов. Те, кто утверждают обратное и говорят что аккумуляторы с меньшей емкостью разрядятся быстрее и умрут – путают с ПОСЛЕДОВАТЕЛЬНОЙ сборкой, плюйте им в лицо.
Важно! Перед подключением друг к другу все аккумуляторы должны иметь примерно одинаковое напряжение, чтобы в момент спаивания между ними не потекли уравнительные токи, они могут быть очень большими. Поэтому лучше всего перед сборкой просто зарядить каждый аккумулятор по отдельности. Разумеется время зарядки всей сборки будет увеличиваться, раз вы используете все тот же модуль на 1А. Но можно спараллелить два модуля, получив зарядный ток до 2А (если ваше зарядное устройство может столько дать). Для этого нужно соединить перемычками все аналогичные клеммы модулей (кроме Out- и B+, они продублированы на платах другими пятаками, уже и так окажутся соединенными). Либо можно купить модуль (ссылка на Aliexpress ), на котором микросхемы уже стоят в параллель. Этот модуль способен заряжать током в 3 Ампера.

Простите за совсем очевидные вещи, но люди по-прежнему путают, поэтому придется обсудить разницу между параллельным и последовательным соединением.
ПАРАЛЛЕЛЬНОЕ соединение (все плюсы к плюсам, все минусы к минусам) сохраняет напряжение аккумулятора 4,2 вольта, но увеличивает емкость, складывая все емкости вместе. Во всех пауэрбанках применяется параллельное соединение нескольких аккумуляторов. Такая сборка по-прежнему может заряжаться от USB и повышающим преобразователем напряжение поднимается до выходных 5v.
ПОСЛЕДОВАТЕЛЬНОЕ соединение (каждый плюс к минусу последующего аккумулятора) дает кратное увеличение напряжения одной заряженной банки 4,2в (2s – 8,4в, 3s – 12,6в и так далее), но емкость остается прежняя. Если используются три аккумулятора на 2000mah, то емкость сборки – 2000mah.
Важно! Считается что для последовательной сборки священно обязательно нужно использовать только аккумуляторы одинаковой емкости. На самом деле это не так. Можно использовать разные, но тогда емкость батареи будет определяться НАИМЕНЬШЕЙ емкостью в сборке. Складываете 3000+3000+800 – получаете сборку на 800mah. Тогда спецы начинают кукарекать, что тогда менее емкий аккумулятор будет быстрее разряжаться и умрет. А это неважно! Главное и действительно священное правило – для последовательной сборки всегда и обязательно нужно использовать плату защиты BMS на нужное количество банок. Она будет определять напряжение на каждой ячейке и отключит всю сборку, если какая-то разрядится первой. В случае с банкой на 800 она и разрядится, БМС отключит нагрузку от батареи, разряд остановится и остаточный заряд по 2200mah на остальных банках уже не будет иметь значения – нужно заряжаться.

Плата BMS в отличии от одинарного зарядного модуля НЕ ЯВЛЯЕТСЯ ЗАРЯДНЫМ УСТРОЙСТВОМ последовательной сборки. Для зарядки нужен настроенный источник нужного напряжения и тока . Об этом Гайвер снял видео, поэтому не тратьте время, посмотрите его, там об этом максимально досконально.

Можно ли заряжать последовательную сборку, соединив несколько одинарных зарядных модулей?
На самом деле при некоторых допущениях – можно. Для каких-то самоделок зарекомендовала себя схема с использованием одинарных модулей, соединенных также последовательно, но для КАЖДОГО модуля нужен СВОЙ ОТДЕЛЬНЫЙ ИСТОЧНИК ПИТАНИЯ. Если заряжаете 3s – берёте три телефонных зарядки и подключаете каждую к одному модулю. При использовании одного источника – короткое замыкание по питанию , ничего не работает. Такая система также работает и как защита сборки (но модли способны отдавать не более 3 ампер) Либо же просто заряжайте сборку побаночно, подключая модуль к каждому аккумулятору до полного заряда.

Индикатор заряженности аккумулятора

Тоже насущная проблема – хотя бы примерно знать сколько процентов заряда остается на аккумуляторе, чтобы он не разрядился в самый ответственны момент.
Для параллельных сборок на 4,2 вольта самым очевидным решением будет сразу приобрести готовую плату пауэрбанка, на которой уже есть дисплей отображающий проценты заряда. Эти проценты не супер-точные, но всё же помогают. Цена вопроса примерно 150-200руб, все представлены на сайте Гайвера. Даже если вы собираете не пауэрбанк а что-то другое, плата эта довольно дешевая и небольшая, чтобы разместить ее в самоделке. Плюс она уже имеет функцию заряда и защиты аккумуляторов.
Есть готовые миниатюрные индикаторы на одну или несколько банок, 90-100р
Ну а самым дешевым и народным методом является использование повышающего преобразователя МТ3608 (30 руб.), настроенного на 5-5,1v. Собственно если вы делаете пауэрбанк на любом преобразователе на 5 вольт, то даже не нужно ничего докупать. Доработка заключается в установке красного или зеленого светодиода (другие цвета будут работать на другом выходном напряжении, от 6в и выше) через токоограничивающий резистор 200-500ом между выходной плюсовой клеммой (это будет плюс) и входной плюсовой (для светодиода это получится минус). Вы не ошиблись, между двумя плюсами! Дело в том, что при работе преобразователя между плюсами создается разница напряжения, +4,2 и +5в дают между собой напряжение 0,8в. При разряде аккумулятора его напряжение будет падать, а выходное с преобразователя всегда стабильно, значит разница будет увеличиваться. И при напряжении на банке 3,2-3,4в разница достигнет необходимой величины, чтобы зажечь светодиод – он начинает показывать, что пора заряжаться.

Чем измерять емкость аккумуляторов?

Мы уже привыкли в мнению, что для замера нужен Аймакс b6, а он стоит денег и для большинства радиолюбителей избыточен. Но есть способ замерить емкость 1-2-3баночного аккумулятора с достаточной точностью и дешево – простой USB-тестер.

Это, небольших размеров плата содержит контроллер заряда Li-Ion аккумуляторов TP4056 (Datasheet) Микросхема имеет индикацию процесса заряда и сама отключает аккумулятор при достижении напряжения на нем 4,2 В.

Судя по схеме из даташита, микросхема имеет вход для подключения терморезистора АКБ. Но на плате первая ножка микросхемы сидит на земле и для подключения аккумулятора доступны только выводы питания.

Ток заряда зависит от номинала резситора Rprog на 2 ножке микросхемы. На плате которая пришла ко мне стоит резистор 1,2 кОм. Что, судя по таблице из даташита, соответствует току заряда 1000мА

При таком токе, мой подсевший аккумулятор (от Nokia что на фото) зарядился примерно за час с начального напряжения 3,4 до 4,19 Вольт. На вход зарядника подавал 5 вольт от USB компьютера.

Пощупал, ничего не нагрелось. Боялся что при максимальном токе будет нагреваться аккумулятор, тем более что обратная связь отсутствует. Но ничего, обошлось. При первом запуске ничего не взорвалось и не грелось за все вермя работы:)

В общем по впечатлениям контроллер понравился, и в первую очередь ценой. За 1$ получаем полноценный контроллер с индикацией и в готовом исполнении, удобном для применения в своих проектах.

Описание нового модуля

Micro USB модуль - зарядное литий - ионных и литий - полимерных аккумуляторов с номинальным зарядным током 1,0А и защитой по току для построения портативных POWERBANK

Устройство собрано на специализированной микросхеме TP4056. Это завершенное изделие с линейным зарядом по принципу постоянное напряжение / постоянный ток для одноэлементных литий-ионных аккумуляторов.
Перестройка тока заряда возможна с помощью замены программного резистора R3 на плате модуля резистором, выбранным согласно представленной ниже таблице:

Возможно параллельное подключение аккумуляторов к зарядному устройству.
Микросхема имеет индикацию заряда и сама отключает аккумулятор при достижении напряжения 4.20В. Также на плате расположена защита по току при питании от неё через выход устройства. Защита собрана на микросхеме DW01-P (One Cell Lithium-ion/Polymer Battery Protection IC).
Применены следующие режимы защиты:
1. Защита от перезаряда. Превышение максимально допустимого напряжения заряда на аккумуляторе.
2. Защита от переразряда. Разряд аккумулятора ниже минимально допустимого напряжения.
3. Защита от перегрузки по току. Превышение максимального разрядного тока аккумулятора.
Восстановление цепи заряда / разряда аккумулятора после срабатывания защит происходит автоматически.

Индикаторы: красный - заряд, зелёный (голубой) - батарея заряжена.

Батарея подключается к выходам "B+", "B-". Нагрузка к выходам "OUT+", "OUT-". Входное напряжение помимо интерфейса USB может подаваться на выводы "+" и "-".

Возможно подключение повышающего преобразователя на выход устройства, как показано на рисунке:

Технические характеристики:

Метод заряда: линейный
Зарядный ток: 1,0А
Отклонение зарядного напряжения: не более 1,5%
Входное напряжение: постоянное 4,5 - 5,5В
Напряжение полного заряда: 4,0 - 4,1В
Напряжение полного разряда: 2,9 - 3,1В

Защиты:
Порог защиты от перезаряда: 4,2 - 4,3В
Порог защиты от переразряда: 2,3 - 2,5В
Порог защиты по току разряда: 3,0А

Входной интерфейс: Micro USB
Рабочая температура: -10°C - +85°C
Габариты (ШхГхВ): 26х17х3(мм)
Вес: 3г


R5 C2 — фильтр цепи питания DW01A. Через него также осуществляется контроль напряжения на аккумуляторе.
R6 — нужен для защиты от переполюсовки зарядки. Через него также измеряется падение напряжения на ключах для нормальной работы защиты.
Красный светодиод — индикация процесса заряда аккумулятора
Синий светодиод — индикация окончания заряда аккумулятора

Переполюсовку аккумулятора плата выдерживает лишь кратковременно — быстро перегревается ключ FS8205A. Сами по себе FS8205A и DW01A переполюсовки аккумулятора не боятся из-за наличия токоограничивающих резисторов, но из-за подключения TP4056 ток переполюсовки начинает течь через него.

При напряжении аккумулятора 4,0V, измеренное полное сопротивление ключа 0,052 Ом
При напряжении аккумулятора 3,0V, измеренное полное сопротивление ключа 0,055 Ом

Защита от токовой перегрузки — двухступенчатая и срабатывает, если:
— ток нагрузки превышает 27А в течение 3мкс
— ток нагрузки превышает 3А в течение 10мс
Информация рассчитана по формулам из спецификации, реально это не проверить.
Длительный максимальный ток отдачи получился около 2,5А, при этом ключ заметно нагревается, т. к. на нём теряется 0,32Вт.

Защита от переразряда аккумулятора срабатывает при напряжении 2,39В — маловато будет, не всякий аккумулятор можно безопасно разряжать до такого низкого напряжения.

Попробовал приспособить эту платку в старую маленькую простейшую детскую радиоуправляемую машинку вместе со старыми аккумуляторами 18500 из ноутбука в сборке 1S2P mysku. ru/blog/aliexpress/29476.html
Машинка питалась от 3-х батареек АА, т. к. аккумуляторы 18500 значительно толще их, крышку батарейного отсека пришлось снять, перегородки выкусить, а аккумуляторы приклеить. По толщине они получились заподлицо с днищем.

Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, об одной интересной модификации «народного» зарядного модуля TP4056 на ток 3А и небольшом применении в качестве самодельной зарядки для лития. Будет небольшое тестирование и простенький пример изготовления зарядки из дешевых компонентов, поэтому, кому интересно, милости прошу под кат.

Итак, вот та самая модификация «народной» платки:

Применение данной платы:

  • Зарядка Li-Ion аккумуляторов, встроенных в конечное устройство. Частый случай – в устройстве несколько запараллеленных банок и 1А слишком мало. Ну, сами посудите, есть две-три банки по 2,6-3Ач, общая емкость около 6-7Ач. Заряд такой батареи займет около 7-8 часов, а с данной платкой – около 3 часов. Как пример – самодельные ПБ, аккумуляторные отвертки и минишуруповерты
  • Сборка своего «быстрого» зарядника на один или два аккумулятора. Современные высокоемкие аккумуляторы на 3300-3500mah спокойно могут принимать 3-4А, а уж две запараллеленные банки тем более (перед зарядом лучше приблизительно уравнять потенциалы). Сами производители допускают заряд некоторых банок током 3-4А, об этом написано в даташитах на эти банки.
ТТХ:
  • Входной разъем – DC Port 5мм + дублирующие выводы;
  • Входное напряжение - 4,5V-5,5V
  • Конечное напряжение заряда - 4,2V (Li-Ion аккумуляторы);
  • Максимальный зарядный ток - 3А;
  • Количество модулей TP4056 - 4 (макс. разгонный ток 4А);
  • Индикация – дискретный двухцветный светодиод (красный/зеленый);
  • Защита от переполюсовки - нет;
  • Размеры - 65мм*15мм.
Комплектация:
  • Плата заряда 4*TP4056 на 3А;
  • Двухцветный трехногий светодиод (красный/синий свет);
  • DC разъем 5мм.

Поставляется платка в обычном мелком пакете, до меня доехала за две-три недели. Внутри пакета была своеобразная защита – два склеенных листа пенополиэтилена, внутри которых и была платка:

Плата зарядки крупным планом:

По схемотехнике ничего сверхъестественного – просто взяли и запараллелили 4 контроллера TP4056, одновременно уменьшив максимальный зарядный ток для каждого контроллера с 1А до 750ma. Поначалу я не мог понять, почему максимальный зарядный ток всего 3А, ведь контроллеров то четыре, но приглядевшись, увидел не привычный 1,2Ком SMD резистор, а 1,6Ком. Причем во всех плечах стоит резистор 1,6Ком:

Напомню таблицу максимального зарядного тока в зависимости от номинала токозадающего резистора:

В нашем случае стоят резисторы по 1,6Ком для каждого контроллера, по 750ma на плечо. Следовательно, общий максимальный зарядный ток – 3А. Оно и к лучшему, меньше греется платка, да и 4А уже многовато. С другой стороны, если нужен зарядный ток 4А – меняем 4 резистора.

Регулировать общий зарядный ток подпайкой подстроечного/переменного резистора, скорее всего, не получится, ибо нужно задавать для каждого контроллера.

Итого, кому сложно или не хочет сам спаивать народные платки - неплохое решение проблемы.

Размеры платки:

Платка совсем небольшая, всего 65мм*15мм:

Вот сравнение с «народной» платой TP4056 на 1А, 18650 аккумулятором и холдером:

При необходимости можно откусить переднюю часть платы, на которую впаивается DC разъем и припаяться к контактам 5V+ или 5V-, либо напрямую к соответствующим дорожкам:

Так длина платки станет на 1 сантиметр короче. Ранее я уже переделывал народную платку, вот что получилось:

В нашем случае все просто до невозможности, ибо дорожки на печатной плате не страдают. Разумеется, кому необходим DC разъем – оставляем, либо подпаиваем его через провода к контактам 5V+ или 5V-. Разъемы microUSB и miniUSB здесь нежелательны, будут сильно греться, ибо не рассчитаны на такие токи. Да и незачем они, ибо в большинстве адаптерах стоит ограничение на 2,5А. Но с другой стороны, если адаптер не отключается при перегрузке, то мы экономим на дискретном блоке питания, ну и ток будет чуть меньше. Поэтому, решать вам…

Тестирование платки 4*TP4056 3A:

Теперь протестируем платку. Действительно ли она заряжает 3А? Для этого нам поможет ампервольтметр, который частенько мелькает в моих обзорах (замер тока заряда) и привычный мультиметр (замер напряжения на аккумуляторе). В качестве источника питания – импульсный БП S-30-5 на 5V/6A:

Как видим, заряд действительно идет постоянным током 3А (фаза СС), пока напряжение на банке не превысит 3,9V-3,95V, затем начинает плавно снижаться (начинается фаза CV). Как только напряжение на банке равняется 4,2V, цвет светодиода меняется на зеленый, означая, что заряд окончен. Хотя из-за инерционности ток продолжает еще течь:

После этого еще 10-15 минут ток снижается, при этом напряжение на аккуме 4,21V. Как только ток снизится до 150ма, контроллер полностью отключает заряд, напряжение на банке скидывается до 4,2V.

Практически «выжатую» банку Sanyo UR18650ZY 2600mah модуль зарядил за 75-80 минут. Ну что же, просто великолепно!

Небольшой пример сборки своего зарядника на 3А:

В качестве примера приведу пример постройки своего зарядного устройства из проверенных недорогих компонентов. Что нам для этого понадобится:

1) Непосредственно сама обозреваемая плата TP4056* :

Нужен именно медный, а не омедненный. Определить легко – зачищаем ножом и если жилки начинают блестеть и не лудятся, значит, провод омедненный (алюминий покрытый медью). Рекомендую либо качественный акустический, либо бытовые, типа ШВВП.

5) Блок питания (БП) на 5V на 5-6A (с запасом). Я использовал БП S-30-5 на 5V/6A* :

Можно применить часто встречающийся БП на 12V на 2-3A, которые идут в комплекте к различным устройствам и понижающий DC-DC преобразователь на 5А (3А они стабильно держат). Но здесь есть пара минусов, ибо усложняется схема и повышается себестоимость зарядника. Поэтому, если нет в наличии подходящего БП, то используем БП компьютера. Дополнительная нагрузка в 15Вт ему не страшна, если, конечно, он и так не работает на пределе своих возможностей. Если есть в наличии свободный Molex разъем, то подцепить к нему переходник не составит труда. В таком случае нам нужны красный (+) и черный (-) провода.

Итак, с компонентами разобрались. Теперь непосредственно сборка:

Поскольку платка будет использоваться в другом устройстве и у меня уже есть хорошие высокотоковые зарядники, то самодельная зарядка мне не нужна, поэтому сборка, как говорится, на коленке (подпаивать разъемы я не буду):

Берем холдер для аккумулятора и вырезаем пластик на торцах для провода (на фото нижний паз):

Потом припаиваем питающие провода с разъемами или без них, в зависимости от того, какой вариант вы выбрали. Трехногий светодиод изгибаем по своему усмотрению, но чтобы не коротнуть его выводы – натягиваем на них изоляцию от любого провода:

Закрываем плату пластиковой крышкой от кабель-канала или аналогичным кожухом и заматываем всеми известной изолентой, :-). Получается довольно кустарно, но главное работает:

Контрольная проверка, все работает:

Я не стал припаивать разъемы, а подключил напрямую к БП. Я же рекомендую припаять соответствующий разъем, который выдержит длительное протекание тока 3А. На этом у меня все…

Плюсы:

  • Надежная, проверенная годами элементная база;
  • Высокий ток заряда;
  • Возможность увеличения зарядного тока до 4А путем замены токозадающих резисторов;
  • Небольшой размер;
  • Простота монтажа и эксплуатации.
Минусы:
  • Цена великовата;
  • Платка не предназначена для зарядки последовательных сборок (2S, 3S, 4S и более не умеет);
  • Требуется внешнее питание;
  • Боится переполюсовки;
  • Некоторая заторможенность последней фазы заряда (CV).

Вывод: полезная модификация

Цена: $0.69

Перейти в магазин

Здравствуйте, друзья! Как и обещал, выкладываю обзор миниатюрной зарядной платы. Она предназначена для заряда литий-ионных аккумуляторов. Основная ее фишка в том, что она не «привязана» в какому-либо конкретному типоразмеру - 186500, 14500 и т.д. Подойдет абсолютно любой литий-ионный аккумулятор, к которому можно подключить «плюс» и «минус».

Плата совсем миниатюрная.

Не смотря на наличие USB-micro входа для подачи питания, входные «плюс» и «минус» продублированы еще и клеммами.

Это очень даже неплохой плюс. Объясню почему.

Во-первых, можно взять какой-нибудь блок питания припаять провода напрямую к плате. Поможет в том случае, если USB-micro вход по каким-то причинам окажется неисправным.

Во-вторых, можно взять, скажем, 3 платы, соединить три входных плюса и три входных минуса (получится параллельное соединение), и тогда от одного блока питания можно будет заряжать одновременно 3 аккумулятора. А если хочется зарядить аккумуляторы побыстрее, то можно будет подключить второе и даже третье зарядное устройство.

Выходы на аккумулятор, кстати, тоже можно запараллелить.

Т.е., если соединить те же 3 платы не только на входе, но и на выходе, то можно получить очень мощное зарядное устройство для литий-ионных аккумуляторов. В данном случае это будет зарядка на 3А.

Но один достаточно смешной момент все-таки есть - отверстия на выходных плюсе и минусе - разного диаметра. Почему так - не знаю.

Ну да ладно, это мелочь. Главное чтоб она нормально работала. Кстати, именно этим мы сейчас и займемся - проверкой работоспособности данной платы.

Тест 1. Отсечка по факту полного заряда.

Этот тест я проводил на двух аккумуляторах - оригинальном Панасонике на 3400mAh и на фейковом ноунейме на 5000mAh (а если серьезно - 450mAh).

Синий огонек на плате свидетельствует о том, что заряд аккумулятора завершен. Мультиметр при этом показывает 4,23В. Да, я не спорю, 4,25В на заряженном аккумуляторе это как бы тоже в пределах нормы, но… Вообще выше 4,2В как бы не желательно. А может что-то изменится, если плату отключить?

Почти те самые идеальные 4,2В. Т.е. аккумулятор все-таки заряжен «без излишеств». Но что будет, если Вы забыли снять аккумулятор сразу после его полного заряда? Обратите внимание, на приведенном выше фото почти 6 часов вечера. Подключим зарядку обратно и оставим в таком состоянии на несколько часов.

(спустя 5 с чем-то часов)

Я снова отключил плату, чтоб она не мешала измерениям напряжения на аккумуляторе. И что в итоге?

Никакого повышения напряжения на аккумуляторе не произошло. Может дело в емкости аккумулятора? Что будет, если вместо оригинальных Панасоников зарядить фейковые ноунеймы на 450mAh реальной емкости? Так и сделал - сначала разрядил один такой аккумулятор, а потом поставил заряжаться. И уснул.

А на утро… Ну что ж, отключаем зарядную плату и…

Итак, мы выяснили, что отсечка заряда происходит при достижении напряжения в 4,2В. Но на фото напряжение ниже. Т.е. после окончания заряда никакой «дозаправки» не происходит. Поясню. Некоторые зарядные устройства после окончания заряда продалжают подавать небольшой ток (буквально 10-15mA) для того, чтоб компеенсировать саморазряд аккумулятора. Здесь этого не происходит. Но это не страшно. Избыточный заряд - гораздо страшнее.

Подведем черту:
- заряжает до напряжения 4,19В и производит отсечку
- компенсация саморазряда не производится.

Проще говоря, тест пройден с успехом.

Тест 2. Ток.

Китаяц обещал, что данная плата способна заряжать током до 1А. Проверим? Для этого я почти разрядил один из имеющихся Панасоников (примерно до 3,3В), а потом поставил на зарядку. И что мы имеем?

Наблюдательные спросят - «а зачем ты USB-тестер из цепи убрал? ты ему не доверяешь что ли?». Друзья, этот USB-тестер хорош для замера емкости аккумулятора, но для замера мощности зарядной платы он не подходит. И вот почему. Буквально сразу же я встроил uSB-тестер обратно в цепь и…

… и сила тока заряда упала на целых 200mA. Именно по этой причине я ВСЕГДА ставлю дизлайки к тем видео, где чувак берет USB-зарядку, втыкает туда такой тестер, дает нагрузку, токоотдача не соответствует заявленной (например, заявлено 2A, а отдача составляет 1,5A), а потом еще и диспут с продавцом открывает, мол, как это так, мне 1,5А мало, мне 2А подавай! Я не знаю, с чем это связано, но после того, как я сделал эти 2 фото, я снова убрал USB-тестер из цепи и ток заряда восстановился до 1А.

Так что данной характеристике плата полностью соответствует.

Тест 3. Нагрев.

Ну тут все просто - подождал 10 минут, а потом «снял» температуру с помощью пирометра.

Я не буду разбираться нормально это или нет. Я просто добавлю к ней алюминиевый радиатор охлаждения.

Тест 4. Поведение при работе с избыточно заряженными аккумуляторами.

Друзья, параллельно с обзором на эту зарядную плату, я отщелкиваю еще и обзор на панасоники. Поэтому в этих двух обзорах несколько фотографий будет одинаковыми. Так вот. Ради теста я разрядил один из Панасоников до недопустимо низкого напряжения.

И вот сейчас у любителей данных Панасоников сердце облилось кровь. Ведь они ожидали увидеть разряд до 2,4В, может даже 2,2В, но никак не 1,77В.

Я обнулил счетчик тестера и поставил заряжаться. И вот тут я был приятно удивлен. Я ожидал, что из-за малого сопротивления аккумулятора ток будет запредельно высоким, что даже с USB-тестером ток будет ближе к 2А, что зарядная плата будет работать в бешеных перегрузках, почти на коротком замыкании, и прочую драму, которая заставляет радиолюбителей сидеть и трястись от мыслей вроде «да что ж ты делаешь, ублюдок!» Ничего подобного.

Всего 80mA (ОК, округлим до 100) - так называемый «восстановительный» ток. Фантастика! Т.е. эта плата умеет работать еще и с избыточно разряженными аккумуляторами!

А может она просто глючит? Не думаю. Спустя некоторое время, когда аккумулятор принял в себя примерно 35mAh, ток зашкалил за 1А.

Пока включил цифровик, пока настроил, пока туда-сюда, аккумулятор принял в себя 50mAh. Именно их мы и вычтем из итоговой емкости, которую нам покажет USB-тестер. Но это уже совсем другая история.

Друзья, учитывая цену в 50р - данная микросхема достойна аплодисментов.

Мудрость: чем сильнее бабушка любит внука - тем круче этот внук отыгрывается на своих родителях.

Кинокомпания «Разоблачение» представляет… Триллер «Кабелерез». В главных ролях:

Для начала нужно определиться с терминологией.

Как таковых контроллеров разряда-заряда не существует . Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки - сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде - это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют .

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого .

Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.

Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:

И вот тоже они:

Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).

DW01-Plus

Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.

Сама микросхема DW01 - шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 - это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 - датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.

Вся схема выглядит примерно вот так:

Правая микросхема с маркировкой 8205А - это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Series

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241 .

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 Series

LV51140T

Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T .

Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы - вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.

R5421N Series

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки - порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:

SA57608

Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608 .

Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:

SA57608 потребляет достаточно большой ток в спящем режиме - порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).

LC05111CMT

Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor - контроллер заряда-разряда на микросхеме LC05111CMT .

Решение интересно тем, что ключевые MOSFET"ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет ~11 миллиом (0.011 Ом). Максимальный ток заряда/разряда - 10А. Максимальное напряжение между выводами S1 и S2 - 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2.6x4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты - в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда - это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV - постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество "заливаемой" в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу - при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.