Какой прибор измеряет яркость объекта. Люксметр прибор для измерения света. Приборы для фототехники

Люксметр, по-видимому, - какой-то измерительный прибор. Но что за величину он контролирует, не каждый даст вразумительный ответ. Хорошо, если вспомнят об освещении в комнате или на рабочем месте. И действительно, аппарат предназначен для измерения одной из характеристик световой обстановки. Постараемся подробно осветить этот вопрос: назначение, принцип действия устройства и методы его использования.

Немного теории

В интернете наблюдается большая путаница в научно-технических терминах, касающихся области светотехники. Один и тот же прибор называют по-разному. Рассматриваемое устройство - люксметр, например, иногда выдают за измеритель светового потока, хотя это не так.

Световой поток - это характеристика осветительного элемента, и говорить об этой величине можно только относительно конкретного источника освещения (лампы накаливания, газоразрядного элемента, светодиода и т. д.). Единицей этой характеристики в системе СИ является люмен (лм). Это сила света в 1 канделу (кд) в телесном угле 1 стерадиан (ср).

Измеряют этот параметр с помощью фотометрического шара (сферического интегратора) диаметром 1 или 2 метра, либо настольными интегрирующими сферами размером от 10 см до полуметра. Все эти приборы, естественно, не для бытового применения, поскольку цена даже небольшого отечественного прибора ТКА-КК1 для контроля светодиодов составляет 35 000 рублей.

Поток света, действующий на единицу площади, выражается освещённостью. Единица этой характеристики - люкс (лк) - результат освещения поверхности в 1 м² потоком, равным 1 люмену. Понятие «освещённость» относится не к источнику освещения, а к окружающей среде. Световой поток есть величина постоянная для каждого источника, в то время как освещённость в каждой точке помещения зависит от нескольких факторов:

  • количества источников, находящихся рядом с местом измерения;
  • светового давления каждого из них;
  • расстояния до источников;
  • отражающей способности предметов обстановки.

Что такое люксметр и для чего он нужен?

«Измеряй все, поддающееся измерению, а что не поддаётся - сделай измеряемым» - этот афоризм, приписываемый Галилею, подтверждает, что освещённость тоже можно измерить. Поскольку её единицей служит люкс (по-гречески - свет), то и прибор для измерения освещённости называется люксметр (метр - измеряю). Применяется как внутри помещения, так и на открытом пространстве. В каких случаях он используется?

Установлено, что как слабый, так и чрезмерно яркий свет действует неблагоприятно на протекающие в мозгу процессы. При недостатке освещения падает работоспособность, снижается концентрация внимания, возникает сонливость. Излишне яркий свет приводит к возбуждению нервной системы. И то, и другое создаёт предпосылки для несчастного случая. Поэтому в число плановых мероприятий по охране труда на рабочих местах входит и проверка освещения рабочих мест. ГОСТ Р 55710-2013 устанавливает нормы освещённости (в люксах) помещений различного назначения. Упрощенно, в офисе согласно санитарным нормам и правилам (СНИП) освещённость должна быть от 200 до 300 лк.

Процесс фотосинтеза у растений, в результате которого вырабатываются питательные вещества из углерода воздуха, происходит под воздействием света. При этом растения по-разному реагируют на температурные условия и уровень освещённости. Практически все культурные растения и большинство овощей хорошо развиваются в условиях умеренного освещения. Другие виды требовательны к высокой температуре и освещённости. Поэтому люксметры используют для контроля и поддержания требуемой освещённости для различных культур в тепличных хозяйствах, оранжереях, ботанических садах.

Устройство и принцип работы

Основой любого люксметра является фотоэлемент - полупроводниковое устройство, в котором световые кванты передают свою энергию электронам, в результате чего возникает электрический ток. Сила тока пропорциональна величине освещённости в том месте, где находится фотоприемник.

Другим элементом люксметра служит аналоговый или цифровой индикатор. В механических устройствах электрический ток, преобразуемый гальванометром, вызывает вращательное движение стрелки указателя. В цифровых приборах аналоговый сигнал (электрический ток) с помощью оптико-электронного конвертора преобразуется в цифровой с отображением результата на жидкокристаллическом дисплее. Конструктивно оба узла (фотоприемник и преобразователь) выполняются либо в виде самостоятельных элементов, соединённых между собой проводом, либо в общем корпусе.

Моноблок лучше подходит для оперативного проведения замеров, поскольку меньше весит и удобнее в работе. Однако возникают неудобства при измерении в труднодоступных местах, с разных направлений и регистрации при этом показаний. Поэтому при проведении аттестации рабочих мест чаще всего используют приборы с вынесенным фотодатчиком. Рассмотрим некоторые из наиболее распространённых моделей.

Прибор для измерения освещенности Ю-116

Устройство ещё советской разработки Ю-116 в диапазоне от 1 до 100 000 лк. Состоит из 2-х частей: селенового фотоэлемента и стрелочного гальванометра, служащего для замера показаний. Хранится в футляре в разобранном виде, что обеспечивает надёжную защиту от повреждений. Перед работой фотоприемник соединяют с преобразователем с помощью вилки.

На шкале измерителя имеются 2 концентрические дуговые шкалы. Внутренняя проградуирована от 0 до 30 лк, наружная - от 0 до 100. На фотоэлемент одета светорассеивающая насадка, состоящая из белой полупрозрачной пластмассы и непрозрачного кольца. Обозначена она буквой «К», измерения с ней производятся в указанных выше диапазонах. Имеются ещё 3 фильтра-насадки: М, Р и Т. При установке их параллельно с базовой насадкой К диапазон измерения увеличивается соответственно: в 10, 100 и 1000 раз.

Две кнопки на панели прибора предназначены для переключения с одной шкалы на другую. Когда включена левая кнопка, измерения производятся в диапазонах: 0 – 30, 0 – 300, 0 – 3000, 0 – 30 000 (при установке соответствующих насадок). При включённой правой: 0 – 100, 0 – 1 000, 0 – 10 000, 0 – 100 000. Кроме кнопок на корпусе имеется корректор для установки стрелочного индикатора в нулевое положение.

Люксметр Ю-117 отличается от предшественника лишь большим количеством кнопок. Вместо двух клавиш переключения шкал прибор оснащён пятью кнопками переключения диапазонов, благодаря чему повышается точность измерения. Добавлены также кнопки включения прибора, контроля питания и регулятор установки на ноль. Питание обеих моделей автономное - от гальванического элемента типа «Крона» напряжением 9 В. Цена приборов у разных продавцов - от 6 до 10 тысяч рублей.


Как пользоваться люксметром?

Быстро и безопасно для фотоприемника найти нужный диапазон измерения можно, если действовать в определённой последовательности:

  1. Установите на фотоприемник насадки с максимальным светопоглощением (К и Т), включите правую кнопку, что соответствует измерению максимальной освещённости - 100 000 лк. При отсутствии реакции измерительной стрелки включите левую (до 30 000 лк).
  2. Если стрелка не шевелится, замените фильтр на более прозрачный (Р) и включайте в той же последовательности: сначала правую кнопку, затем левую.
  3. При отсутствии шевеления установите мягкий фильтр (М) и произведите аналогичные манипуляции.
  4. Если в этом случае при нажатой левой кнопке результат будет менее 5 лк, снимите базовую насадку К и заканчивайте поиск.

Чтобы отодвинуть измеряемую величину от области перекрытия двух шкал (в районе 5 – 20 делений), рекомендуется отсчёт измерения начинать с 5 делений по внутренней шкале, или с 20 по наружной. Для этой цели на шкалах отмечены точки начала отсчёта.

Помните: избыточное освещение селенового фотодатчика может повлиять на правильность измерений, поэтому соблюдайте приведённую последовательность действий.

Люксометры Testo

Один из современных измерителей освещённости, наиболее популярных в России - цифровой люксметр Testo 540 (Германия). Прибор выполнен в одном объёме, фотоэлемент интегрирован с корпусом, благодаря чему повышается удобство использования: отсутствует соединительный провод, который может за что-то зацепиться, измерения можно производить одной рукой.

Формой и габаритами девайс напоминает сотовый телефон. Для индикации показаний служит такой же дисплей, а клавиатура содержит всего 3 кнопки: включения, выбор системы измерения (СИ или американская - фут-свеча) и сохранения результатов. Диапазон измерения: 0 – 100 000 лк или 0 – 93 000 фут-свечей.

Прибор как нельзя лучше подходит для применения в повседневной жизни. С его помощью можно измерять уровень освещения в жилых комнатах, школах, детских садах, в теплицах, помещениях для хранения картофеля и так далее. Обращаться с девайсом предельно просто: нажал кнопку включения, выбора системы (треугольник) и - все. Результат высветится практически мгновенно. Для сохранения результата измерения следует нажать кнопку «mode».

Цифровой прибор Testo 545 относится к классу профессиональных устройств для измерения освещённости среды. Светоприемник выполнен отдельно от электронного блока и соединяется с ним проводником. Отличается от младшего брата бо льшими функциональными возможностями:

  • память для хранения до 3000 результатов измерений;
  • сохранение в памяти 99 мест измерения;
  • подключение к персональному компьютеру;
  • построение объёмного графика величины освещенности в пределах помещения;
  • распечатка данных на принтере.

Этот прибор используется в процессе измерении освещенности зданий, сооружений, а также улиц, дорог и других общественных мест. Цена люксметра Testo 540 сравнима с ценой прибора Ю-116 (около 10 тысяч), а Testo 545 продается за 35 тысяч рублей.

Люксметр является одним из наиболее доступных и в то же время эффективных приборов для измерения параметров освещённости объекта. Его использование обеспечивает комфортные условия для человека, как в производственной обстановке, так и в повседневной жизни. Надеемся, что предложенная статья поможет вам сориентироваться, выбирая прибор с нужными возможностями за приемлимую цену.

Контроль за освещённостью осуществляется с помощью специальных приборов — люксметров. Люксметры используются для измерения освещённости, создаваемой как искусственными, так и естественными источниками освещения. Единица измерения освещённости - люкс (лк), отражает количество светового потока, падающего на единицу поверхности. В Англии и США освещённость измеряют в фут-свечах (fc) — один люмен на квадратный фут (1 fc = 10,76 лк); в некоторых странах в «фотах» (фот) — один люмен на квадратный сантиметр (1 фот = 10000 лк).

Недостаточное количество света приводит к повышенной утомляемости, снижению работоспособности и негативно влияет на качество зрения. Несмотря на то, что при оценке света учитываются несколько параметров - в том числе сила света и яркость, именно освещенность является ключевым параметром.

Принцип работы люксметров предельно прост: он основан на работе фотоэлемента, преобразующего световую энергию в электрический ток. Все люксметры, применяемые для измерения освещённости , обладают небольшим размером и весом.

С помощью которых осуществляется измерение освещённости, в первую очередь применяются специалистами по охране труда. Обязательный контроль освещённости рабочего места, согласно действующим санитарным правилам, должен проводиться не реже одного раза в год. Актуально приобрести прибор для измерения освещённости и для домашнего использования.

Выбор люксметра во многом зависит от поставленных перед прибором задач. Наиболее надежный и удобный измеритель освещённости — . Он способен измерить уровень освещения в диапазоне от 1 до 200 000 люкс (ПГ 3,0%). Время непрерывной работы данного прибора составляет не менее 8 часов. Для использования в музеях, библиотеках и научных центрах подойдет - приборный комплекс, созданный специально для учреждений культуры и искусства. Помимо функций люксметра, данный аппарат совмещает в себе функции УФ-радиометра, измерителя влажности и температуры воздуха. При этом его вес составляет всего 430 грамм.

Сегодня купить приборы для измерения освещённости можно напрямую у производителя — ООО ""НТП ""ТКА"". Данное научно-техническое предприятие занимается разработкой и выпуском контрольно-измерительных приборов с 1999 года. Каждый измеритель освещённости , выпущенный НТП ""ТКА"", соответствует государственным стандартам, имеет сертификаты и удобен в эксплуатации.

Измерение яркости

Одна из важнейших характеристик, влияющая на работоспособность человека - яркость света. Данная характеристика равна отношению силы света в конкретном направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную оси наблюдения. Единица измерения яркости - кандел на квадратный метр (кд/м 2). Яркость характеризует пространственное и поверхностное распределение светового потока. Для измерения яркости используются специальные приборы - .

Измеритель яркости преобразует световой поток, создаваемый естественным или искусственным источником освещения, в непрерывный электрический сигнал, пропорциональный уровню освещенности. Эта информация выводится на табло прибора для измерения яркости в виде цифрового значения.

Прежде всего, измерение яркости необходимо для контроля уровня светового ощущения глаз человека. Недостаточная или избыточная яркость способна вызывать быструю утомляемость, ухудшение зрения и, как следствие, полную или частичную потерю работоспособности. Современный прибор для измерения яркости необходим для того, чтобы контролировать и своевременно реагировать на изменения данного параметра. При этом необходимо помнить, что свет, генерируемый источником, должен иметь такое спектральное распределение плотности энергетической яркости, которое обеспечивало бы однозначное присвоение ему того или иного цвета. Необходимость постоянного контроля обусловлена использованием современной техники - ЖК мониторов, телевизоров, ламп дневного света, внедрение светодиодных светильников. Для исключения мешающих зеркальных отражений в дисплеях яркость потолочных или встраиваемых светильников хотя бы в: двух основных плоскостях не должна превышать 200 кд/м 2 .
Ограничение яркости видимых поверхностей светильников - это важный показатель качества освещения, так как именно яркость является той световой величиной, на которую непосредственно реагирует глаз человека. Превышение предписанных нормами и стандартами величин яркости недопустимо в связи с вероятностью возникновения слепимости.

Измеритель яркости - прибор первой необходимости в службах охраны труда и обеспечения техники безопасности. Яркомеры широко используются в кинотеатрах, научных центрах, образовательных и медицинских учреждениях, музеях и библиотеках. Все без исключения, они отличаются компактными размерами и небольшим весом.

Яркомеры бывают накладного и проекционного типа. Приборы накладного типа используют для измерения плоских протяжённых самосветящихся объектов. Например, для измерения яркости плоских светильников или мониторов. Конструкция яркомера накладного типа проста. Яркомер проекционного типа имеет оптическую схему, позволяющую вырезать телесный угол обследуемого объекта и спроецировать этот фрагмент объекта фотодатчик. Приборы этого типа позволяют измерять яркость удалённых объектов (фонарей, потолочных светильников, сигнальных индикаторов) сложной формы, а также отражённую яркость несамосветящихся объектов - стен, экранов кинотеатров, дорожных знаков и других подобных объектов. Очевидно, что сфера применения проекционного яркомера гораздо шире, чем у накладного. Но у него гораздо сложнее конструкция и намного выше цена. При поиске необходимой модели обязательно обращайте внимание на нижний предел чувствительности средства измерения . С пектральная чувствительность яркомеров в нашем случае нормализована функциями относительной спектральной световой эффективности монохроматического излучения для дневного зрения (L>10 кд/м 2 ).

Выбор прибора, осуществляющего измерение яркости , зависит от поставленных перед ним задач. Например, прибор совмещает в себе функции яркометра (накладным методом), люксметра и пульсметра, и позволяет осуществлять комплексный контроль над всеми параметрами освещения на рабочем месте. Я ркомер незаменим при монтаже кинопроекторов и оборудования в кинозалах, а - позволит не только контролировать яркость киноэкранов, но и измерит цветовые характеристики создаваемого цифровыми кинопроекторами изображения (координаты цветности и коррелированную цветовую температуру).

Измерение оптических параметров светодиодов

Применяемые сегодня светодиодные технологии все больше вымещают традиционные виды освещения. Это связано с их характеристиками: высокой вибрационной устойчивостью, простотой обслуживания и длительным сроком эксплуатации. Благодаря достаточной контрастности излучаемого освещения и оптимальной цветовой температуре, светодиоды все чаще используются для общего освещения жилых домов и офисных помещений.

Тем не менее, внедрение передовых технологий освещения в повседневную жизнь требует тщательного контроля оптических параметров светодиодов . Измерение параметров светодиодов включает в себя измерение светового потока, спектральный анализ освещения и его цветовые характеристики. Измерения осуществляются при помощи прибора .
Неоспоримым помошником при расчете энергоэффективности светотехнических приборов может стать , который позволяет произвести измерения плотности фотосинтетического фотонного потока PPFD [ мкмоль/с/м² ].

Для измерения светового потока светодиодов может использоваться гониометрический метод или метод интегрирующей сферы. Измерение светодиода гониометрическим методом основано на пошаговой фиксации значений силы светового потока, испускаемого источником при его повороте на известный угол. Метод интегрирующей сферы, в свою очередь, позволяет получать такие же данные гораздо быстрее путем выполнения несложных технических операций. В нём световой поток светодиода сопоставляется с заранее вычисленным потоком эталонного источника света (относительное фотометрирование).

Измерение светодиода методом интегрирующей сферы проводится с помощью фотометрического шара, позволяющего получить наиболее точные данные. В соответствии с законом Ламберта, шар рассеивает световой поток равномерно, что позволяет максимально быстро произвести измерение оптических параметров светодиодов.

Именно на основе метода интегрирующей сферы специалистами научно-технического предприятия «ТКА» создан . С помощью данного прибора можно максимально точно проводить измерение светодиодов в режиме реального времени. В нём световой поток светодиода сопоставляется с заранее замеренным потоком эталонного источника света. Приёмником света является фотодиод, установленный в нижнюю полусферу. В силу этого возможно перейти от относительных измерений к прямым измерениям светового потока в люменах (абсолютное фотометрирование). Небольшие размеры прибора значительно облегчают процесс измерения светового потока одиночных светодиодов . На начало 2014 года прибор не имеет прямых отечественных аналогов, а доступная цена делают прибор номером один для измерения светодиодов .

Измерение температуры и влажности воздуха внутри помещений

Современный измеритель влажности , это устройство, которое выполняет точные замеры показателей влажности, необходимые для обеспечения условий работы в строительной, пищевой, нефтегазовой и других промышленностях. В зависимости от области применения прибора, существуют его конструкционные отличия.

Постепенно уходят в прошлое привычные многим измерители температуры на базе ртутных термометров. Современный измеритель температуры - это цифровое устройство, которое имеет ряд преимуществ над своим ртутным предшественником. Во-первых, он не содержит ртути, а, значит, не подпадает под действие различных запретов на использование (в последнее время различные государственные учреждения издают указы, запрещающие использование и транспортировку ртутных измерителей температуры). И такая тенденция наблюдается в большинстве мировых стран.

Во-вторых, его корпус выполнен из нержавеющей стали, что гарантирует прочность его корпуса намного выше, чем стекло у ртутного. В-третьих, цифровые термометры не требуют предварительной калибровки, отображаемая ими температура соответствует фактической. В-четвертых, стоимость владения цифровым измерителем температуры значительно ниже стоимости ртутного аналога, ведь при использовании ртутных термометров понадобятся значительные средства на очистку территории после случайного разлива этого опасного металла.

Выпущенные НТП ""ТКА"", дополнительно отображают вычисляемые в режиме реального времени параметры: температура влажного термометра (t вл, °С) и температура точки росы (t тр, °С).

Относительная влажность воздуха является определяющей характеристикой в деревообрабатывающей, полиграфической и сельскохозяйственной промышленности. При работе с деревом и бумагой в производственных помещения, а также для сохранения сельскохозяйственной продукции на складах надежным помощником является термогигрометр . Он убережет изделия из древесины при очень сухом воздухе или при процессах лакировки. Отрегулирует необходимую температуру воздуха и показатель влажности для хранения бумажных листов. Поможет содержать в целости и сохранности собранный урожай.

Контроль над влажностью воздуха поможет повысить продуктивность животноводства и уменьшить затраты кормов и энергетических ресурсов, а еще обеспечит на фермах благоприятные санитарно-гигиеничные условия.

Нынешнее поколение фирмы НТП ""ТКА"" - это мобильные и компактные устройства, которые одновременно могут обслуживать сразу несколько зданий. Кроме названных выше отраслей промышленности, термогигрометры применяются еще в текстильной (при производстве пряжи и волокон) промышленности, а также в производстве табачных изделий.

В приборах, выпускаемых НТП ""ТКА"", реализована уникальная возможность определения значений ТНС и WBGT индексов в режиме реального времени благодаря одновременному измерению температур воздуха и внутри черного шара , влажности воздуха и вычислению точных значений температуры влажного термометр а по специальной программе, защищенной Свидетельством об официальной регистрации программы для ЭВМ. Дополнительное одновременное определение значений средней температуры излучения и плотности потока теплового излучения обеспечивает эффективную и достоверную оценку возможного теплового перегрева при исследовании горячей окружающей среды.

Развивается новая линейка автономных регистраторов , которые предназначены для измерения относительной влажности, температуры и атмосферного давления и записи их во внутреннюю память и дополнительно могут быть снабжены функцией передачи данных как по USB , так и по Wi-Fi , с возможностью объединения нескольких таких устройств в измерительно-информационную сеть.

Поверхностную плотность светового потока, подающего на освещаемую плоскость – освещенность, измеряют с помощью люксметров типа Ю116 или Ю117. Они представляют собой миллиамперметр и фотоэлемент (рис. 3.3.1). Фотоэлемент состоит из стальной пластины, на которую нанесен светочувствительный слой селена. На поверхность селена напылен тончайший (5 нм) полупрозрачный слой золота или платины. Между этими двумя слоями образуется так называемый «запирающий слой» с односторонней проводимостью. Стальная пластина и полупрозрачный слой являются двумя электродами.

Рис. 3.3.1 Люксметр Ю-116

При освещении фотоэлемента между этими электродами возникает фототок, пропорциональный падающему световому потоку. Величину фототока регистрирует миллиамперметр, проградуированный в люксах (лк).

Принципиальная схема объективного люксметра показана на рис. 3.3.2.

Рис. 3.3.2 Принципиальная схема люксметра с селеновым фотоэлементом

Используемый в лабораторной работе люксметр имеет две шкалы с максимальными значениями 30 и 100 лк. Для увеличения пределов измерения люксметр снабжен светофильтрами с коэффициентами 10, 100 и 1000.

Приборы, используемые для измерений, должны проходить либо государственную поверку, либо метрологическую аттестацию.

Измерения показателя освещения в производственном помещении должно проводиться на рабочих местах в соответствии с характерным разрезом помещения и по условной рабочей поверхности. При наличии нескольких рабочих поверхностей показатели освещения измеряются на каждой из них. При наличии протяженных рабочих поверхностей, на каждой из них должно быть выбрано несколько контрольных точек, позволяющих оценить различные условия освещения. Измерение в каждой точке следует проводить не менее двух раз, полученные результаты необходимо усреднять.

Измерения естественной освещенности могут проводиться только при сплошной равномерной облачности (просветы отсутствуют). Для определения КЕО производится одновременное измерение освещенности внутри помещения и наружной освещенности на горизонтальной площадке под полностью открытым небосводом (например, на крыше здания или на другом возвышенном месте). Измерения проводятся двумя наблюдателями, оснащенными люксметрами и хронометрами.

При работе с люксметром необходимо соблюдать следующие условия:

    приемную пластину фотоэлемента размещать на рабочей поверхности в плоскости ее расположения (горизонтальной, вертикальной, наклонной);

    при измерении исключать попадание случайных теней от человека и оборудования, если рабочее место затеняется в процессе работы самим рабочим или выступающими частями оборудования, то освещенность следует измерять в этих реальных условиях;

    не допускать установки измерителя на металлические поверхности.

3.4 Порядок проведения работы и оформления результатов измерний

3.4.1 Измерить освещенность для выбранных контрольных точек рабочей поверхности помещения. Одновременно измерить наружную освещенность

Внимание! Во избежание вывода из строя прибора первоначальное измерение освещенности производить со светофильтром. Переключатель пределов измерения установить в положение «100 лк».

Измеренная освещенность определяется как произведение показания люксметра на коэффициент светофильтра.

3.4.2 Результаты измерений занести в бланк отчета.

3.4.3 Определить фактические значения КЕО по формуле

,

где
– освещенность внутри помещения в точке заданной плоскости, лк;

–освещенность снаружи помещения, лк.

3.4.4 Результаты расчетов занести в бланк отчета.

3.4.5 По данным расчета построить график изменения КЕО в контрольных точках.

3.4.6 Определить нормированное значение КЕО для помещения лаборатории по формуле

, %,

где N – номер группы административных районов по обеспеченности естественным светом (принимается по таблице 3.4.1);

табличное значение КЕО (принимается по таблице 3.2.1 в зависимости от разряда зрительной работы и вида естественного освещения: боковое, верхнее или комбинированное);

коэффициент светового климата (принимается по таблице 3.4.2 в зависимости от номера группы административных районов, расположения и ориентации световых проемов по сторонам горизонта).

3.4.7 Результаты расчета занести в бланк отчета и нанести на график изменения КЕО в контрольных точках.

3.4.8 Провести анализ результатов определения КЕО:

В настоящее время при огромном разнообразии светотехнических приборов у населения нет единого понятия касательного того, в чем измеряется освещенность. Нередко возникает недоразумение с такими техническими характеристиками, как сила света и яркость, люмены и канделы. Приобретая осветительные приборы, часто обращают внимание на суммарный световой поток, не учитывая потери света и тепла.

В этой статье:

Понятие освещенности

Световой поток измеряется в специальных лабораторных условиях и самопроизвольно его определить невозможно. Поэтому СНиП учитывает величину освещенности, которую, в отличие от светового потока, каждый может измерить самостоятельно. Она представляет собой показатель отношения светового потока, измеряемого в люменах, к площади поверхности, на которую попадают фотоны. Угол падения при этом должен равняться 90°. Единица измерения освещенности — люкс (lux).

Давно уже установлена зависимость психологического и физического состояний человека от света. Если при слабом освещении происходит угнетение мозговых процессов, то при ярком свете они возбуждаются. Но в любом случае сетчатка глаза и ресурсы организма изнашиваются. При проектировании осветительных приборов определяют коэффициент запаса (КЗ), который должен учитывать вероятный спад освещенности установки. Для искусственного света в показателе предусматривается уменьшение яркости по причине износа оптических компонентов устройства и их естественного загрязнения. Коэффициент естественной освещенности снижается вследствие изменения отражающих свойств окружающих предметов.

Измерение освещенности проводится на рабочих местах вместе с определением уровня загрязненности, звуковых колебаний, электромагнитного излучения, а на некоторых производствах и гамма излучения. Важность знания этих параметров трудно переоценить при создании оптимальных условий труда, и все они соответствуют санитарным правилам и нормам. Например, освещенность должна быть:

  • в рабочем кабинете — 300 лк;
  • в офисе для постоянной работы с компьютером — 500 лк;
  • для технических и конструкторских бюро — 750 лк.


При наличии в помещении естественной подсветки уровень искусственного фона можно снижать.

Приборы для определения уровня освещенности и методика его определения

Наименование прибора похоже на название величины, которую он устанавливает, — люксметр. Принцип работы малогабаритного переносного устройства напоминает работу фотометра. Поток излучения, падая на фоточувствительный элемент полупроводника, отрывает электроны, которые начинают упорядоченно двигаться. Таким образом, замыкается электрическая цепь. Причем величина тока прямо пропорциональна интенсивности освещения фотоэлемента, что имеет свое отражение на шкале аналогового люксметра. Сегодня приборы со стрелками практически исчезли, их заменили цифровые. Они оснащены жидкокристаллическими дисплеями, у которых сам фоточувствительный датчик расположен в отдельном корпусе, а с дисплеем он соединяется с помощью гибкого провода.

В ходе проведения эксперимента по измерению освещенности прибор устанавливается в горизонтальном положении. Причем в соответствии с требованиями ГОСТа их размещают в разных точках помещения, согласно определенной схеме. В 2012 г. Россия приняла новый стандарт измерения характеристики количества светового потока. В старом понятийном аппарате при измерениях использовались такие термины данной величины, как:

  • минимальная, средняя, максимальная, цилиндрическая;
  • естественная;
  • градиент запаса;
  • относительная эффективность когерентного лучевого потока.

В настоящее время к ним добавлены следующие типы освещения:

  • аварийное;
  • рабочее;
  • охранное;
  • эвакуационное;
  • резервное.

Стандарт подробно описывает все тонкости проведения измерительных исследований.

Замеры осуществляются отдельно по естественной и искусственной иллюминации. В ходе проведения эксперимента нельзя допустить, чтобы хоть малейшая тень падала на прибор, а вблизи был хотя бы 1 источник электромагнитных волн. Все они вносят помехи в работу устройства.

После выполнения необходимых замеров освещенности определяется искомая величина. Она сравнивается с нормативным значением. Затем подводятся итоги о достаточности освещенности территории или помещения. Каждый вид измерительных испытаний оформляется специальным оценочным протоколом, чего требует ГОСТ.

Измерение количества света для светодиодных устройств и примеры в природе

Светодиодные светильники стали очень востребованными благодаря уникальной энергоэффективности. Но светодиоды и их источники питания при освещении выделяют тепло, которое рассеивается с помощью теплопроводящих материалов (алюминий) и конструктивных особенностей (ребер, большой радиаторной площади). Несмотря на кажущееся отсутствие связи между потерями тепла и освещенностью, специалисты всегда учитывают ее при создании новых устройств.

Трудности с работой светодиодных светильников начинаются при эксплуатации в условии повышения температуры более +50°С. Почему измерение освещенности светодиодов и рекомендуют проводить после 2 часов их работы, т. е. после выхода на оптимальный режим. Для исключения появления погрешности проводятся неоднократные замеры в течение рабочей смены. Желательно эти исследования проводить как минимум 1 раз в год. Чтобы при проектировании исключить любые ошибки, закладывают коэффициент снижения освещенности, зависящий от физических характеристик объекта.

Обычно производители LED-устройств дают гарантию по их безупречной работе на 3 года. Все параметры функционирования таких светильников, в том числе, и освещенность, должны соответствовать заявленным значениям. Если условия работы устройств происходят при температуре наружного воздуха свыше 45°С, то измерения освещенности необходимо делать гораздо чаще. Иначе неправильное проектирование и полученные результаты приведут к быстрому падению показателей освещения.

Что касается примеров иллюминации в природе, то на орбите Земли и экваторе в полдень данная величина равняется 135 тыс. люкс. В солнечный день она составляет до 100 тыс. лк, в пасмурный — только 1 тыс. люкс, а вот от Луны всего лишь 0,2 лк. Измерение света на улице на широте Москвы в зимний период показало от 4 до 5 тыс. люкс. В безлунную ночь освещенность в тысячу раз меньше, чем в полнолуние, а при 10-бальной облачности — в 10 тыс. раз меньше. То, в чем измеряется освещенность в помещении и естественных условиях, относится к физическим величинам, входящим в Международную систему единиц.

Люксметр - прибор для измерения освещенности, яркости и пульсаций. Он необходим для определения качественных характеристик света. Тусклое освещение и высокий коэффициент пульсации вызывают напряжение органов зрения , что негативно сказывается на общем состоянии организма: появляется усталость, необъяснимая депрессия, другие неприятные ощущения. Главный элемент люксметра - фотодатчик. Попадающие на него лучи света передают свою энергию электронам, в результате чего возникает ток определенной силы, характеризующий степень яркости или освещенности.

Из этой статьи вы узнаете, как пользоваться люксметром, зачем нужно проводить измерения и какие меры необходимо предпринять, чтобы освещение вашего рабочего места, квартиры, загородного дома, дачи и других мест пребывания, соответствовало санитарным нормам. Мы рассмотрим измерение коэффициента пульсаций, освещенности и яркости - условия, при которых необходимо определять эти параметры, а также их влияние на человеческий организм.

Измерение коэффициента пульсаций

Коэффициент пульсации потока света - показатель, характеризующий неравномерность светового потока. Различают пульсацию освещенности и пульсацию яркости. Обе характеристики измеряют в процентах. Допустимые уровни коэффициента пульсации регламентируются актуализированной редакцией СП 52.13330.2011 "Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95" и СанПиН 2.2.1/2.1.1.1278-03. В результате медицинских исследований, учеными установлено, что человеческой глаз воспринимает пульсации частотой до 300 Гц - они воздействуют на мозг, в результате чего происходит подавление природных биоритмов ЦНС, нарушения гормонального фона, другие отклонения в деятельности жизненно важных систем организма.

Измерять пульсацию необходимо у всех осветительных приборов и устройств, оснащенных дисплеями: ноутбуков, планшетов, смартфонов и мобильных телефонов, а так же у настольных и потолочных ламп и прочих источников света. Для измерения коэффициента пульсаций освещённости необходимо:

  • положить люксметр-пульсметр на рабочий или школьный стол, на пол или любую другую поверхность, при этом световой поток должен падать на фотодатчик;
  • если используется многофункциональное устройство, например, RADEX LUPIN, тогда достаточно перейти в режим пульсметра - нажать кнопку «P»;
  • считать результат с дисплея.

Для измерения пульсаций мониторов, экранов, светодиодных и других ламп необходимо:

  • люксметр-пульсметр поднести как можно ближе к объекту измерений при этом фотодатчик должен быть направлен в сторону измеряемого объекта;
  • если используется многофункциональное устройство, например, RADEX LUPIN, тогда достаточно повернуть фотодатчик в сторону объекта измерений и перевести люксметр в режим пульсметра - нажать кнопку «P»;
  • считать результат с дисплея.

На достоверность результатов измерений могут повлиять следующие факторы:

  • наличие дополнительных источников света;
  • перемещение пульсметра при выполнении измерений - прибор должен оставаться неподвижным;
  • прочие помехи - перемещающиеся поблизости предметы и люди, в том числе падающие листья, пролетающие птицы и насекомые и т. д..

Важно! Для точных измерения пульсации люминесцентных, светодиодных и газоразрядных ламп необходимо выждать 5 минут, пока они не выйдут на стабильный режим работы. Намного удобнее работать с пульсметром RADEX LUPIN, так как он оснащен поворотным фотоэлементом.

В соответствии с СанПиН 2.2.1/2.1.1.1278-03 предельно допустимое значение пульсаций для мастерских, санузлов и зон ожидания составляет 20 %, для офисов - 15 %, жилых комнат и спален - по 10%, детских, рабочих мест операторов ПК, кабинетов и библиотек - 5 %. Важно помнить, мы не всегда в состоянии увидеть, как мерцает лампа, но превышение допустимого уровня коэффициента пульсации негативно сказывается и на состоянии нервной системы, и на работоспособности, и на настроении.

Измерение освещенности

Освещенность - физическая величина, представляющая собой отношение светового потока, падающего на единицу площади, не зависит от направления. Единица измерения - Лк (лм/м2). Измерение освещенности люксметром позволяет проверить условия труда и быта, создать подходящие условий для растений и животных, определить характеристики видеоаппаратуры:

  • люксметр необходимо поместить горизонтально в точке измерения, если необходимо определить освещенность рабочего места - прибор надо положить на стол так, чтобы фотодатчик был направлен к источнику или источникам света;
  • при использовании люксметра RADEX LUPIN, нужно перейти в режим измерения освещенности - нажать кнопку «E»;
  • считать результат с дисплея.

Измеритель освещенности определяет количество света, попадающего на поверхность со всех источников, поэтому если необходимо узнать параметры определенного осветительного прибора, все остальные необходимо выключить.

В соответствии с САНПИН 2.2.1/2.1.1.1278-03 минимальная освещенность парт (столов для хобби), комнат для инженеров - составляет 500 Лк, комнат для групповых занятий дошкольников, поверхности компьютерных столов и в читальных залах - 400 Лк, кабинетов, библиотек и слесарных мастерских - 300 Лк.

Плохая освещенность способствует развитию близорукости и других проблем со зрением, вызывает усталость, негативно сказывается на производительности труда. Особое внимание необходимо уделять освещению учебных мест, так как во время чтения, письма или работе на компьютере при недостатке света глаза сильно перенапрягаются. Для измерения освещенности не надо приглашать профессионалов, достаточно обзавестись люксметром RADEX LUPIN. Стоит не дорого, как обычный бытовой люксметр, зато по точности измерений не уступает профессиональному измерительному оборудованию.

Измерение яркости

Яркость - интенсивность излучения света поверхностью источника света, измеряется в кандел на м 2 . Зависит от отражающей способности покрытия. Так, при одной и той же освещенности яркость может отличаться. Низкая или чрезмерно высокая яркость осветительных устройств и экранов может вызывать дискомфорт. В результате снижается способность к концентрации внимания, падает производительность труда.

В основном измеряют яркость мониторов, экранов и дисплеев. Определить этот параметр у осветительных приборов сложнее - из-за криволинейности поверхности затруднительно получить достоверный результат, кроме того, высокая яркость не гарантирует достаточной освещенности. Измерение этого параметра бытовым яркомером RADEX LUPIN осуществляется накладным способом:

  • перейти в режим измерения яркости - в RADEX LUPIN необходимо нажать кнопку «L»;
  • вывести на экран белый фон;
  • установить фотоэлемент как можно ближе к измеряемому монитору, дисплею или лампе, если осветительный прибор нагревается, держать его на расстоянии 1 см от поверхности;
  • считать результат.

При проведении измерений прибор следует удерживать неподвижно. С целью повышения достоверности результата необходимо определить яркость в нескольких точках лампы или экрана, после чего рассчитать усредненное значение. При работе на ПК рекомендуется, чтобы в поле зрения не находилось источников света, яркостью более 200 кд/м2.

Программное обеспечение RadexLight для люксметра RADEX LUPIN

Анализ параметров освещения намного удобнее проводить с помощью бесплатного программного обеспечения RadexLight. Для этого необходимо скачать RadexLight - софт распространяется бесплатно. Программу можно скачать со страницы описания люксметра.

Функции программы:

  • получение информации о световом потоке;
  • построение частотного спектра пульсаций;
  • вывод параметров измерения;
  • определение коэффициента пульсации;
  • отключение фильтра 300 Гц - данная функция предусмотрена только в программе, на приборе она отсутствует.

Информация на монитор выводится в виде графиков, что позволяет получить полное представление об амплитуде, частоте и форме светового потока.

Как улучшить качество освещения?

Чаще всего отклонения в работе осветительных приборов вызваны их низким качеством. Высокая пульсация характерна для недорогих люминесцентных ламп с электромагнитной регулировкой пуска. В устройствах с электронными пускорегулирующими аппаратами уровень пульсаций ниже. Лучший способ понизить уровень пульсации - заменить лампы или светильник. Чтобы измерить мерцание светодиодной лампы и проверить качество светодиодных и других ламп, а точнее их характеристик при покупке, можно компактным люксметром RADEX LUPIN, который обеспечивает высокую точность измерений.

Для снижения пульсации дисплеев и экранов придется поэкспериментировать с настройками. Например, повышать яркость до тех пор, пока уровень пульсаций не станет нормальным. Одновременно с этим можно подстроить цветовую палитру таким образом, чтобы при взгляде на экран не возникало дискомфортных ощущений. Для повышения освещенности можно заменить лампы или помимо основного источника света использовать вспомогательные: настольные лампы или бра.

Чем измерять параметры ЛАМП

В соответствии с ГОСТ Р 54944-2012 для измерения освещенности необходимо использовать приборы с максимальной погрешностью 10 %. Как правило этому требованию соответствуют дорогостоящие люксметры, стоимость которых настолько высока, что их не приобретают для измерения параметров света в бытовых условиях. Так было до недавнего времени, пока не появился люксметр RADEX LUPIN , с помощью которого можно определить освещенность, коэффициент пульсации и яркость. Погрешность измерений составляет 10 %.